- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The role of ionic liquid breakdown in the electrochemical metallization of VO <sub/>2</sub> : An NMR study of gating mechanisms and VO <sub/>2</sub> reduction
摘要: Metallization of initially insulating VO2 via ionic liquid electrolytes, otherwise known as electrolyte gating, has recently been a topic of much interest for possible applications such as Mott transistors and memory devices. It is clear that the metallization takes place electrochemically and, in particular, there has previously been extensive evidence for the removal of small amounts of oxygen during ionic liquid gating. Hydrogen intercalation has also been proposed, but the source of the hydrogen has remained unclear. In this work, solid-state magic angle spinning NMR spectroscopy (1H, 2H, 17O and 51V) is used to investigate the thermal metal-insulator transition in VO2, before progressing to catalytically hydrogenated VO2 and electrochemically metallized VO2. In these experiments electrochemical metallization of bulk VO2 particles is shown to be associated with intercalation of hydrogen, the degree of which can be measured with quantitative 1H NMR spectroscopy. Possible sources of the hydrogen are explored, and by using a selectively deuterated ionic liquid, it is revealed that the hydrogenation is due to deprotonation of the ionic liquid; specifically, for the commonly used dialkyl-imidazolium based ionic liquids, it is the “carbene” proton which is responsible. Increasing the temperature of the electrochemistry is shown to increase the degree of hydrogenation, forming first a less hydrogenated metallic orthorhombic phase then a more hydrogenated insulating Curie-Weiss paramagnetic orthorhombic phase, both of which were also observed for catalytically hydrogenated VO2. The NMR results are supported by magnetic susceptibility measurements, which corroborate the degree of Pauli and Curie-Weiss paramagnetism. Finally, NMR spectroscopy is used to identify the presence of hydrogen in an electrolyte gated thin film of VO2, suggesting that electrolyte breakdown, proton intercalation and reactions with decomposition products within the electrolyte should not be ignored when interpreting the electronic and structural changes observed in electrochemical gating experiments.
关键词: metal-insulator transition,hydrogen intercalation,VO2,NMR spectroscopy,electrolyte gating,ionic liquid
更新于2025-09-23 15:21:21
-
Electrolyte‐Gated n‐Type Transistors Produced from Aqueous Inks of WS <sub/>2</sub> Nanosheets
摘要: Solution-processed, low cost thin films of layered semiconductors such as transition metal dichalcogenides (TMDs) are potential candidates for future printed electronics. Here, n-type electrolyte-gated transistors (EGTs) based on porous WS2 nanosheet networks as the semiconductor are demonstrated. The WS2 nanosheets are liquid phase exfoliated to form aqueous/surfactant stabilized inks, and deposited at low temperatures (T < 120 °C) in ambient atmosphere by airbrushing. No solvent exchange, further additives, or complicated processing steps are required. While the EGTs are primarily n-type (electron accumulation), some hole transport is also observable. The EGTs show current modulations > 104 with low hysteresis, channel width-normalized on-conductances of up to 0.27 μS μm?1 and estimated electron mobilities around 0.01 cm2 V?1 s?1. In addition, the WS2 nanosheet networks exhibit relatively high volumetric capacitance values of 30 F cm?3. Charge transport within the network depends significantly on the applied lateral electric field and is thermally activated, which supports the notion that hopping between nanosheets is a major limiting factor for these networks and their future application.
关键词: field-effect transistor,tungsten disulfide,semiconducting nanosheet network,electrolyte-gating,transition-metal dichalcogenide
更新于2025-09-04 15:30:14
-
Electrolyte-based ionic control of functional oxides
摘要: The use of electrolyte gating to electrically control electronic, magnetic and optical properties of materials has seen strong recent growth, driven by the potential of the many devices and applications that such control may enable. Contrary to initial expectations of a purely electrostatic response based on electron or hole doping, electrochemical mechanisms based on the motion of ions are now understood to be common, suggesting promising new electrical control concepts.
关键词: optical properties,electrochemical mechanisms,electrostatic response,electronic properties,electrolyte gating,magnetic properties
更新于2025-09-04 15:30:14