修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
研究主题
  • secondary winding
  • digital signal processor
  • light emitting diode
  • light intensity detection
  • electronic current transformer
  • electrical bandpass filter
  • side-mode suppression ratio
  • cascaded filter connection
  • side modes
  • opto-electronic oscillator
应用领域
  • Optoelectronic Information Science and Engineering
  • Electrical Engineering and Automation
  • Electronic Science and Technology
机构单位
  • State Grid Fujian Electric Power Research Institute
  • Jinan University
  • Don State Technical University
  • University of Ljubljana
  • Fuzhou University
  • University College London
  • Charles Darwin University
  • University of Ottawa
553 条数据
?? 中文(中国)
  • Graphdiyne: A promising nonlinear optical material modulated by tetrahedral alkali-metal nitrides

    摘要: A new series of the functionalized graphdiyne (GDY) material was designed by adsorbing the tetrahedral Li3NM molecules on the largely delocalized π-conjugated GDY surface, namely Li3NM@GDY (M = Li, Na, K), and its structure, chemical stability, electronic property, and the first hyperpolarizability were investigated by using the density functional theory computations. Our results reveal that the Li3NM molecules can interact with three triangular holes on the GDY surface, in which the van der Waals interactions play a crucial role in enhancing the structural stability. Meanwhile, the total NPA charges on the Li3NM molecules are gradually increased from Li to K, and the Li3NM molecules can transfer an electron to GDY, forming intramolecular electron donor and acceptor pairs. All of studied complexes exhibit the giant static first hyperpolarizabilities (βtot), up to ~2.88 × 105 a.u. for Li3NK@GDY, which can be explained by two-level expression from the TDDFT calculations. This study will inevitably stimulate further synthesis of the novel graphdiyne-based nonlinear optical materials.

    关键词: Graphdiyne,Electronic structure,TDDFT,Charge transfer,Nonlinear optical property

    更新于2025-09-23 15:23:52

  • 2D Schottky Junction between Graphene Oxide and Transition-Metal Dichalcogenides: Photoresponsive Properties and Electrocatalytic Performance

    摘要: 2D graphene is conductor and not a semiconductor. 2D transition—metal dichalcogenides (TMD) is a semiconductor and not a conductor. Preparing 2D composite material that simultaneously possesses both advantages of graphene and TMD has proven to be challenging. In this work, both 2D-WS2/2D-GO and 2D-MoS2/2D-GO composites with few layer thickness are synthesized. The electronic structure indicates a high content of Mo4+ 3d5/2 and W4+4f7/2 with lower binding energy in the 2D composite, which is ascribed to partial loss of surface sulfur atoms in 2D composites and the newly formed heteroatomic bond of CWS and CMoS. The Schottky junction between 2D-GO and 2D-TMD (2D G-T junction) is established and exhibits obvious photoelectric responses. Superior electrocatalytic properties of the two 2D-composites are attributable to the 2D Schottky Junction between 2D-TMDs and 2D-GO. Interlayer electronic coupling in 2D Schottky Junction (2D G-T junction) activates inert sites on the 2D surface of 2D-TMDs or GO. The power conversion efficiency of dye-sensitized solar cells (DSCs) based on 2D-WS2/2D-GO is 9.54% under standard solar illumination intensity (AM1.5, 100 mW cm?2). The value is one of the highest reported efficiencies for DSCs based on Pt-free counter electrodes. Finally, 2D-WS2/2D-GO composites exhibit excellent stability as counter electrode of DSCs.

    关键词: photoresponse,interlayer electronic coupling,2D,electrocatalyst,graphene,transition-metal dichalcogenides,Schottky junction

    更新于2025-09-23 15:23:52

  • Optoelectronic Properties of Zinc Oxide: A First-Principles Investigation Using the Tran-Blaha Modified Becke-Johnson Potential

    摘要: In this work, density functional theory (DFT) is used to investigate the influence of semi-local exchange and correlation effects on the electronic and optical properties of zinc oxide. It is found that the inclusion of such effects using the Tran–Blaha modified Becke–Johnson potential yields an excellent description of the electronic structure of this material giving an energy band gap which is systematically larger than the one obtained with standard local functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced. We also calculated the dielectric functions of ZnO and find a violet shift to the absorption edge which is in good agreement with experimental results.

    关键词: zinc oxide,electronic structure,optical properties

    更新于2025-09-23 15:23:52

  • Investigation of Structural and Elastic Stability, Electronic, Magnetic, Thermoelectric, Lattice-Dynamical and Thermodynamical Properties of Spin Gapless Semiconducting Heusler Alloy Zr2MnIn Using DFT Approach

    摘要: In recent times, spin gapless semiconductors (SGS) have attracted much attention as a promising candidate for spintronics and thermoelectric applications due to their high carrier concentration and good thermoelectric figure of merit. In this paper, we have carried out a systematic theoretical investigation of the structural, elastic, thermal, electronic, magnetic, thermoelectric, lattice dynamical and thermodynamical properties of Zr2MnIn using density functional theory (DFT) based first principle calculations. The band structure calculation shows indirect band gap in a spin down channel and zero band gap in a spin up channel of valence and conduction bands confirming the spin gapless semiconducting nature of Zr2MnIn. The structural and dynamical stability of the antiferromagnetic phase of Zr2MnIn has also been investigated. Magnetization in Zr2MnIn originates due to the d state electrons of Zr atoms, which follows the Slater Pauling rule: Mt = Zt (cid:2) 18. Phonon dispersion curves exhibit real frequency of phonon modes throughout the Brillouin zone, which confirms the dynamical stability of the antiferromagnetic phase of Zr2MnIn. Thermodynamical properties including specific heat and Debye temperature have been calculated using phonon density of states. A higher value of the thermoelectric figure of merit 1.25, predicts that this alloy as good thermoelectric properties with better output efficiency.

    关键词: Spin gapless semiconductor (SGS),magnetic moment,structural and elastic stability,thermoelectric and lattice dynamical properties,electronic structure

    更新于2025-09-23 15:23:52

  • Organic Field-Effect Transistor Based Ultrafast, Flexible, Physiological Temperature Sensors with Hexagonal Barium Titanate Nanocrystals in Amorphous Matrix as Sensing Material.

    摘要: Organic field-effect transistors (OFETs) with hexagonal barium titanate nanocrystals in amorphous matrix (h-BTNC) as one of the bilayer dielectric system have been fabricated on a highly flexible 10 μm thick polyethylene terephthalate (PET) substrates. The device current and mobility remains same upto a bending radius of 4mm that make it suitable for wearable e-skin applications. h-BTNC films found to be highly temperature sensitive and the OFETs designed based on this material showed ultra-precession (~4.3 mK), low power (~ 1μW at 1.2 V operating voltage), ultrafast response (~24 ms) in sensing temperature over a range from 20 °C to 45 °C continuously. The sensors are highly stable around body temperature and work at various extreme conditions, such as under water, solutions of different pH as well as of various salt concentrations. These properties make this sensor very unique and highly suitable for various healthcare and other applications, where in a small variation of temperature around this temperature range is required to be measured at an ultra-fast speed.

    关键词: low power OFETs,electronic skin,temperature sensors,organic field-effect transistors,flexible sensors,healthcare sensors

    更新于2025-09-23 15:23:52

  • Effect of atom adsorption on the electronic, magnetic, and optical properties of the GeP monolayer: A first-principle study

    摘要: First-principles calculations have been carried out to explore the effect of atom surface adsorption on the electronic, magnetic, and optical properties of the germanium phosphide (GeP) monolayer. It is shown that the GeP monolayer exhibits good adsorption capability to all the selected adatoms and can preserve the structural integrity upon the adsorption of most adatoms. The adatoms can bring out diverse electronic properties to the GeP monolayer. The H, Li, Na, K, and Al adatoms donate electrons to the GeP monolayer and result in its metallization. The other adatoms do not change the semiconducting nature of the GeP monolayer and will induce midgap states (Mg, Ca, Si, Ge, Ag, and Au) or reduce the bandgaps (Ni, Pd, and Pt). The B, N, P, As, V, Cr, Mn, Fe, and Co adatoms induce spin magnetic moments into the GeP monolayer. Especially, the spin magnetic moments are mainly located on the adatoms for the GeP decorated with the V, Cr, Mn, Fe, and Co atoms. As a result, the dilute magnetic semiconductor can be obtained. In addition, all the adatoms decrease the work function, except O. Thus, some effects on the optical properties are highly expected. The GeP monolayer exhibits a wide range of light absorption and the Mg, Si, Ge, Cu, Ag, Au, and Pt adatoms can further redshift the absorption edge of the GeP monolayer along the x and y directions. Our calculations provide an effective method to modulate the electronic, magnetic, and optical properties of the GeP monolayer for device applications.

    关键词: and optical properties,GeP monolayer,magnetic,First-principles calculations,electronic,atom surface adsorption

    更新于2025-09-23 15:23:52

  • First-principles study of the electronic structure and optical properties of Eu2+–M (M = Mn2+, Mg2+, Li+) co-doped γ-AlON phosphor

    摘要: In our recent work we found γ-AlON:Eu2+ phosphors to hold promise for application in white light-emitting diodes (LEDs). To obtain further insight into Eu2+–M (M = Mn2+, Mg2+, Li+) co-doped γ-AlON, the crystal structure and the electronic and photoluminescence properties of γ-AlON:Eu2+–M (M = Mn2+, Mg2+, Li+) phosphors were studied using first-principle calculations under the framework of density functional theory. Based on the experimental and calculated results, the structure of Eu2+–M (M = Mn2+, Mg2+, Li+) co-doped γ-AlON was established. The calculated results demonstrate that Eu2+ and M (= Mn2+, Mg2+, Li+) can effectively improve the absorption of ultraviolet light by γ-AlON:Eu2+. The absorption coefficient of AlON:Eu2+–Li+ in the ultraviolet blue region of 275–415 nm reached 67,266 cm–1, and the absorption coefficients of AlON:Eu2+–Mn2+ and AlON: Eu2+–Mg2+ at the same doping concentration were 51,219 and 60,575 cm–1, respectively. Our calculations therefore show that the performance of AlON:Eu2+–Li+ is better than AlON:Eu2+–M (M = Mn2+, Mg2+).

    关键词: γ-AlON,First principles,Electronic structure,Optical property

    更新于2025-09-23 15:23:52

  • Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation

    摘要: The oxygen evolution reaction (OER) plays a crucial role in the application of water splitting, which is a highly competitive option for a sustainable energy future. Thus, it is vital to design highly active and durable electrocatalyst for OER. Herein a hybrid with the nominal composition of Ba2Co1.5Mo0.25Nb0.25O6-d (denoted as BC1.5MN) electrocatalyst consisting of both double perovskite and single perovskite structures is synthesized by a solid-state reaction method. When tested as an electrocatalyst for OER, the BC1.5MN electrocatalyst requires a current density of 10 mA cm-2 at an overpotential of 400 mV, an onset overpotential of 260 mV, and a Tafel slope of 70 mV dec-1, which are superior to that of precious metal oxide IrO2 catalyst. Chronoamperometric and cyclic voltammetry studies demonstrate that the BC1.5MN electrocatalyst has outstanding durability in alkaline solution. The synergistic effect between multi-active sites derived from a single/double perovskite hybrid structure results in one of the most active perovskite-based OER electrocatalysts in alkaline solution.

    关键词: hybrid,oxygen evolution reaction,double perovskite,single perovskite,electronic structure

    更新于2025-09-23 15:23:52

  • Correlation between magneto-optical and transport properties of Sr doped manganite films

    摘要: The features of electronic structure of La0.7Sr0.3MnO3, Pr0.8Sr0.2MnO3, and Pr0.6Sr0.4MnO3 polycrystalline films of different thickness have been investigated using magnetic circular dichroism (MCD) in the range of 1.1e4.2 eV. The temperature behavior of the samples electrical resistance were also has been studied. It was found that films with high Sr content (0.3 and 0.4) act as high-temperature semiconductors, while the maximum in the temperature dependences of resistivity these films indicates the transition of the samples to the metallic state at some temperature TM-S, which is different for different sample thickness. The films with the lower Sr content (0.2) act as insulators in the used temperature range. The MCD spectra have been decomposed to the Gaussian-shaped lines, and the temperature dependence of intensity of each line has been analyzed in comparison with temperature dependence of the films magnetization and with their electric conductivity type. Different temperature behavior of the intensity of four specified Gaussian-lines was revealed for semiconductor films. In the case of insulating Pr0.8Sr0.2MnO3 samples, the intensity of three specified Gaussian lines changes with the temperature in the same way as the magnetization changed. It was established that the lanthanide (La, Pr) type does not affect the MCD spectra shape for the films with the same electrical conductivity type. Besides, the correlation between the MCD data of the films and their conductivity type was revealed. Due to the detailed analysis of the specified Gaussian lines with taking into account the well-known in the literature absorption bands, lying outside the studied spectral region, the MCD bands for the studied manganite films have been identified with electronic transitions of a different nature.

    关键词: Magnetic circular dichroism,Thin films,Electronic properties,Electrical transport,Crystal structure,Manganites

    更新于2025-09-23 15:23:52

  • Band structure and optical constants of SnS <sub/>2</sub> single crystals

    摘要: Absorption (K), reflection (R) and wavelength modulated transmission (ΔT/Δλ) spectra in SnS2 crystals of hexagonal phase (space group P63/mmc) were investigated in temperature interval from 300 to 10 K. It was established that indirect band gap (Eg ind - 2.403 eV) is due to unpolarized indirect transitions between Γ and M points of Brillouin zone. A minimal direct band gap (Eg dir - 2.623 eV) in E||b polarization is formed by direct allowed transitions and in E⊥b polarization (2.698 eV) by forbidden transitions in Γ point of Brillouin zone. A magnitude of refractive index (n) changes from 3 to 4 and has a maximum at 2.6 eV. Optical functions (n, k, ε1 and ε2) in energy region E > Eg (3 - 6.5 eV) were calculated from measured reflection spectra by Kramers-Kronig analysis. Features observed in reflection and optical function spectra were assigned to electron transitions. This electron transitions were localized in framework of theoretically calculated band structure.

    关键词: optical functions,electronic band structure,layered SnS2 crystals,absorption, reflection and transmission spectra

    更新于2025-09-23 15:23:52