- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Stable and low noise field emission from single p-type Si-tips
摘要: Single gated p-type Si-tips with two different tip radii were fabricated. An emission current of 2.40 μA was measured for the sharp-edged tip at a voltage of 170 V. In contrast, a stable and reproducible emission behavior was observed with an increased tip radius resulting in a pronounced saturation region between 90 V and 150 V, but merely an emission current of 0.55 μA at 150 V. More remarkable is the stable emission behavior with fluctuation of ± 4 % during a measurement period of 30 minutes. The integral emission current in a homogeneous tip array (16 emitters) showed nearly the same I-V characteristics compared to the single tip and is therefore, most dominated by only a stable single tip in the array.
关键词: gate-electrode,p-type Si-tips,low current fluctuations,emission stability,field emission
更新于2025-09-23 15:21:21
-
Stable Mesoporous Silica Nanoparticles Incorporated with MoS2 and AIE for Targeted Fluorescence Imaging and Photothermal Therapy of Cancer Cells
摘要: Theranostics for imaging-guided cancer treatment have obtained great attention in recent years for their outstanding capability of both tumor diagnosis and treatment. Molybdenum disulfide (MoS2) nanosheets revealed excellent photothermal conversion efficiency, which could be used as photothermal agents. However, MoS2 nanosheets would often quench or decrease the emission of fluorescence dyes when they were incorporated with these dyes to construct fluorescence-imaging-guided nanotheranostic systems. In this work, MoS2 nanosheets were embedded into mesoporous silica nanoparticles (MSNs), and Aggregation Induced Emission (AIE) fluorogen PhENH2 was chemically modified on the surface of MSNs, which could demonstrate more stable fluorescence emission compared with other MSNs with physically absorbed luminescent molecules. Moreover, folic acid (FA) was also chemically decorated on the nanoparticles to facilitate their targeted bioimaging and photothermal therapy. As expected, the obtained PhENH2-MoS2-FA MSNs could be efficiently taken up by MDA-MB-231 cells than HepG2 cells, owing to the over-expressed FA receptors on MDA-MB-231 cells. Meanwhile, these MDA-MB-231 cells could be efficiently killed under an 808 nm laser irradiation. These results indicated that the achieved multifunctional MSNs chemically decorated with AIE fluorogens would demonstrate more stable fluorescence for bioimaging-targeted photothermal therapy of MDA-MB-231 cells, which made them promising nanotheranostics for further cancer treatment.
关键词: Photothermal Therapy,Molybdenum Disulfide,Targeted Fluorescence Imaging,Aggregation Induction Emission,Stability
更新于2025-09-09 09:28:46