修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
  • 2016
研究主题
  • rural electrification
  • optimised renewable energy utilisation
  • power sharing
  • micro grid
  • community development
  • grid interconnection
  • Battery energy storage systems
  • techno-economic modeling
  • photovoltaics
  • net-metering
应用领域
  • Electrical Engineering and Automation
  • New Energy Science and Engineering
  • Optoelectronic Information Science and Engineering
机构单位
  • Amrita School of Engineering
  • State Grid Sichuan Electric Power Research Institute
  • Aristotle University of Thessaloniki
  • The University of Texas at Austin
  • Northern (Arctic) Federal University named after M.V. Lomonosov
  • Univ. Grenoble Alpes, Grenoble INP
  • Dracula Technologies
  • Majmaah University
  • Ritsumeikan University
  • KNIT
2365 条数据
?? 中文(中国)
  • A simple method to synthesize low-cost carbon modified TiO <sub/>2</sub> counter electrodes for high-efficiency dye-sensitized solar cells

    摘要: Low cost and stable counter electrodes (CE) for dye-sensitized solar cells (DSSC) are promising for widespread use. In this paper, we report a simple and effective method to synthesize carbon modified TiO2 (TiO2/C) thin film as an abundant low cost CE for high-efficiency DSSC. The TiO2 paste layer contained organic compound was deposited on FTO glass substrate by a screen-printing method. When annealing the TiO2 paste layer at 450–550 °C under Ar flow, these organic compounds are decomposed to carbon to form carbon coated TiO2 nanoparticles. When used as a CE of DSSCs, the experimental results point out that the photoelectric conversion efficiency of DSSCs was obviously improved to near that of the referenced Pt CE. For TiO2/C is one of the cheapest and most stable materials, this TiO2/C can be used as a low cost CE for large scale high efficient DSSCs.

    关键词: carbon nano materials,solar energy materials,counter electrode,dye-sensitized solar cell

    更新于2025-11-14 17:04:02

  • Electrochemiluminescence sensing platform for ultrasensitive DNA analysis based on resonance energy transfer between graphitic carbon nitride quantum dots and gold nanoparticles

    摘要: Electrogenerated chemiluminescence (ECL) of semiconductor quantum dots (QDs) is considered as a powerful technique in the fabrication of biosensor, however, the inherent toxicity of the heavy metal ion containing in QDs limits their further applications. Thus, searching for environment-friendly luminescent nanomaterials with high electrochemiluminescence (ECL) e?ciency is an urgent goal. In this work, a solid-state method under low temperature was adopted to prepare graphitic carbon nitride quantum dots (g-CNQDs). By using coreactant K2S2O8, a strong cathodic ECL signal of g-CNQDs could be observed in phosphate bu?er. A novel ECL resonance energy transfer procedure was constructed between g-CNQDs (emitter) and gold nanoparticles (acceptor). A signal probe was formed by connecting gold nanoparticles at the hairpin DNA (Hai-DNA) terminal. When the signal probe was anchored on g-CNQDs, ECL resonance energy transfer occurred due to the ECL quenching of gold nanoparticles to g-CNQDs. This phenomenon decreased the ECL signal. In the presence of target DNA (T-DNA), the looped structure of Hai-DNA could be destroyed by T-DNA, and gold nanoparticles were separated from g-CNQDs. Accordingly, the ECL resonance energy transfer procedure was hindered, and the ECL signal was recovered again. The ECL intensities exhibited linear correlation with the logarithm of T-DNA concentration from 0.02 fM to 0.1 pM, and the limit of detection was 0.01 fM (3σ). With the developed ECL resonance energy transfer system, good selectivity and high sensitivity were achieved in T-DNA detection.

    关键词: Graphitic carbon nitride quantum dots,Electrochemiluminescence,DNA,Resonance energy transfer,Biosensor

    更新于2025-11-14 17:04:02

  • A novel photoelectrochemical biosensor for the sensitive detection of dual microRNAs using molybdenum carbide nanotubes as nanocarriers and energy transfer between CQDs and AuNPs

    摘要: Herein, a novel photoelectrochemical (PEC) biosensor was developed for the ultrasensitive detection of dual microRNAs (miRNAs), with the detection being based on energy transfer (ET) between carbon quantum dots (CQDs) and gold nanoparticles (AuNPs). The PEC platform consisted of a CQDs@Mo2C nanotube modified ITO electrode. Two hairpin probes (H1 and H2) carrying the Au NPs were used “switch off” and “switch on” the PEC signal of the CQDs, with a close approach of the tagged AuNPs to the CQDs quenching the PEC signal. The introduction of different miRNAs (miRNA-159b and miRNA-166a) altered the interparticle distance between the AuNPs and CQDs, thereby affecting the intensity of the PEC response. This approach allowed the highly sensitive detection of both miRNA-159b and miRNA-166a. The linear range of the biosensor for miRNA-159b and miRNA-166a detection were 0.5–5000 fM, with low detection limits of 0.15 fM and 0.21 fM, respectively. To our knowledge, this is the first reported CQDs-based ET biosensor for the PEC detection of dual miRNAs. Results suggest that this approach offers a promising platform for the ultrasensitive detection of multiple miRNAs.

    关键词: MicroRNA detection,AuNPs,Photoelectrochemistry,Energy transfer,CQDs@Mo2C

    更新于2025-11-14 17:03:37

  • A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution

    摘要: Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets, as the promising photocatalyst with fascinating properties, have become a 'rising star' in the field of photocatalysis. Although g-C3N4 nanosheets exfoliated from the bulk g-C3N4 powders are extensively emerged, developing a simple synthetic approach is still full of challenge. To this end, here we report a direct polymerization strategy to fabricate the ultrathin g-C3N4 nanosheets, that is only heating treatment of thiourea in air without addition of any template. The photocatalytic activities of as-prepared samples were evaluated by photoreduction of water to hydrogen (H2) using triethanolamine as sacrificial agent and Pt as co-catalyst under visible-light irradiation (λ > 420 nm). As a result, our few-layered g-C3N4 nanosheets with an average thickness of 3.5 nm exhibit a superior visible-light photocatalytic H2 evolution rate (HER) of 1391 μmol g?1 h?1 and a remarkable apparent quantum efficiency of 6.6% at 420 nm. Eventually, the HER of as-fabricated ultrathin g-C3N4 nanosheets is not only much higher than the dicyandiamide-derived g-C3N4 or melamine-derived g-C3N4, but also greater than the thermal-oxidation etched g-C3N4 nanosheets under the same condition.

    关键词: g-C3N4 nanosheets,Template-free polymerization,Solar energy conversion,2D materials,Photocatalysis,One-step synthesis

    更新于2025-11-14 17:03:37

  • A microfluidic all-vanadium photoelectrochemical cell with the N-doped TiO2 photoanode for enhancing the solar energy storage

    摘要: In this work, the nitrogen-doped TiO2 photocatalyst is synthesized and applied in a microfluidic all-vanadium photoelectrochemical cell for enhancing the solar energy storage. The use of the nitrogen-doped TiO2 photoanode and the minimization design can ensure the visible-light response, increased specific surface area, vigorous pore structure and enhanced photon and mass transport as well as more uniform light distribution. Various characterizations are performed to evaluate the developed photocatalyst and microfluidic all-vanadium photoelectrochemical cell. The results confirm that the developed nitrogen-doped TiO2 photoanode can provide both the extended absorption spectrum and the small anatase crystal size as well as the obviously enlarged specific surface area with plentiful pore structure. Because of these merits, the microfluidic all-vanadium photoelectrochemical cell with the nitrogen-doped TiO2 photoanode yield the average photocurrent density of 0.103 mA/cm2 during the long-term operation, which is much higher than those with the un-doped TiO2 photoanode (0.086 mA/cm2) and commercial P25 TiO2 photoanode (0.073 mA/cm2), presenting 19.8% and 41% improvements, respectively. The results demonstrate not only the promotion of the vanadium reversible redox pairs conversion but also the inherently excellent stability by the nitrogen-doped TiO2 photoanode.

    关键词: Photoanode,N-doped TiO2 photocatalyst,Conversion rate,Microfluidic all-vanadium photoelectrochemical cell,Solar energy storage

    更新于2025-11-14 17:03:37

  • Role of Yb3+ ion on the evaluation of energy transfer and cross-relaxation processes in Gd2Ce2O7: Yb3+, Er3+ phosphors

    摘要: Energy transfer (ET) and cross-relaxation (CR) processes play significant roles in regulating emitting colors and intensity of upconversion (UC) materials. Calculating the coefficients in ET and CR processes can provide visual descriptions for evaluating the UC luminescence properties. Here, we find that those ET and CR processes are responsible for the color-tunable properties in Gd2Ce2O7: Yb3+, Er3+ phosphors. By solving the rate equation, mathematical expressions are established to calculate the ET and CR coefficients based on the experimental UC spectra and lifetimes. The results are benefit to evaluate the efficiencies of ET and CR processes in quantization in different Yb3+ ion concentrations doped samples. The coefficients of ET process arise from 1.05 to 7.93 × 1017 cm3s?1 while those of CR process increase from 2.69 to 72.01 × 1017 cm3s?1 with increasing the Yb3+ ion concentration, which suggest that the CR and ET processes are efficient in Gd2Ce2O7 host. Furthermore, potential temperature sensing properties are also evaluated according to the fluorescence intensity ratio of 2H11/2 and 4S3/2 levels and the maximal sensitivity (S) is achieved about 0.00337 K?1 at 503 K. This work provides an insight into the evaluation of those UC processes and reveals the capacity in color-tunable and temperature sensing aspects.

    关键词: Upconversion,Mathematical expression,Cross-relaxation,Temperature sensing,Energy transfer

    更新于2025-11-14 17:03:37

  • Ultraviolet light assisted heterogeneous Fenton degradation of tetracycline based on polyhedral Fe3O4 nanoparticles with exposed high-energy {110} facets

    摘要: Polyhedral Fe3O4 nanoparticles (NPs) with exposed high-energy {110} facets were synthesized by hydro-thermal method using ferrous sulfate and sodium thiosulfate as precursor at 140 °C. The as-synthesized catalysts were characterized via X-ray powder diffraction (XRD), electro impedance spectra (EIS), scanning electron microscope (SEM), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) at room temperature. The well-defined Fe3O4 NPs with exposed high-energy {110} facets distributed a wide size, and the percentage of {110} facets was approximately 38.5% for single Fe3O4 NPs crystal. The synergistic effect of UV irradiation and the polyhedral Fe3O4 NPs improved the photodegradation efficiency of tetracycline (TC). The degradation efficiency of polyhedral Fe3O4 NPs catalyzing UV-Fenton system reached 96.7% after 60 min reaction, which was more substantial than polyhedral Fe3O4/H2O2 system (40%) and spherical Fe3O4 NPs catalyzing UV-Fenton system (28%) after 60 min reaction. The TOC degradation efficiency reached 56.5% for polyhedral Fe3O4 NPs catalyzing UV-Fenton after 120 min reaction, while UV/H2O2 system and spherical Fe3O4 NPs catalyzing UV-Fenton was 36.0% and 22.1% respectively after 120 min reaction. Moreover, polyhedral Fe3O4 NPs catalyzing UV-Fenton system exhibited an extremely wide pH range (from 3.0 to 9.0) for efficient degradation of TC. Simultaneously, the extraordinary high degradation efficiency was based on 10 mM H2O2 concentration, which had low requirement for H2O2. Further, the polyhedral Fe3O4 NPs could be reused for five consecutive cycles while still achieving at 91.7% of its original degradation efficiency and recycled under a magnetic field along with excellent chemical stability. Ultraviolet light assisted heterogeneous Fenton in the polyhedral Fe3O4 NPs system improved the ?OH and O2?- production efficiency and Fe(III)/Fe(II) redox cycle, which consequently achieved an excellent degradation efficiency.

    关键词: heterogeneous UV-Fenton,Polyhedral Fe3O4 nanoparticles,high-energy {110} facets,tetracycline degradation

    更新于2025-11-14 17:03:37

  • Tricolor- and White Light–Emitting Ce <sup>3+</sup> /Tb <sup>3+</sup> /Mn <sup>2+</sup> -Coactivated Li <sub/>2</sub> Ca <sub/>4</sub> Si <sub/>4</sub> O <sub/>13</sub> Phosphor via Energy Transfer

    摘要: Single-component tunable Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ phosphors were successfully synthesized at 950 °C. Li2Ca4Si4O13:Ce3+,Tb3+ exhibits two luminescence peaking at 430 and 550 nm, which originated from the allowed 5d → 4f transition of the Ce3+ ion and the 5D4 → 7FJ (J = 6, 5, 4, 3) transition of the Tb3+ ion, respectively. Moreover, by codoping Ce3+ ions in the Li2Ca4Si4O13:Mn2+ system, yellow-red emission from the forbidden transition of Mn2+ could be enhanced. Under UV excitation, dual energy transfers (ETs), namely, Ce3+ → Mn2+ and Ce3+ → Tb3+, are present in the Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ system. The ET process was confirmed by the overlap of the excitation spectra, variations in the emission spectra, ET efficiency, and decay times of phosphors. In addition, quantum yields and CIE chromatic coordinates are presented. The emission color of these phosphors can be tuned precisely from blue to green via ET of Ce3+ → Tb3+ and from blue to yellow via ET of Ce3+ → Mn2+. White light can also be achieved upon excitation of UV light by properly tuning the relative composition of Tb3+/Mn2+. This result indicates that the developed phosphor may be regarded as a good tunable emitting phosphor for UV light-emitting diodes.

    关键词: phosphor,energy transfer,Mn2+,Tb3+,Li2Ca4Si4O13,Ce3+,white light-emitting diodes

    更新于2025-11-14 15:29:11

  • Erbium-to-dysprosium energy-transfer mechanism and visible luminescence in lead-cadmium-fluorogermanate glass excited at 405?nm

    摘要: Erbium-to-dysprosium energy-transfer and visible luminescence in the blue, green, yellow, red, and NIR is reported in PbGeO3:PbF2:CdF2 glass under 405 nm excitation. Absorption and excitation spectra were examined in the UV-VIS-IR spectral region. Emission showed a decrease in the Er3+ emissions around 520 and 545 nm when Dy3+ was added to the host matrix, while the Dy3+ emission around 576 nm (4F9/2 – 6H13/2) increased concomitantly. The recorded lifetime for Er3+ emissions also decreased, as Dy3+ concentration was increased for fixed Er3+ content. No similar behavior was observed when Er3+ concentration varied, confirming a one-way Er3+-to-Dy3+ energy transfer mechanism.

    关键词: glass,energy-transfer,visible-light,rare-earth

    更新于2025-11-14 15:25:21

  • Glutaraldehyde non-conjugated chitosan polymer fluorophores for selective determination of picric acid via fluorescence resonance energy transfer strategy

    摘要: Water-dispersed glutaraldehyde (GA) non-conjugated chitosan polymer fluorophores (GCPF) with quantum yield of 16 % is synthesized by stirring chitosan and GA for 6 h at room temperature in the present work. It is a facile and mild method and fluorescent GCPF can be stabled for two months. Owing to the spectral overlap of fluorescent spectrum of GCPF and absorption spectrum of picric acid (PA), a novel sensitive fluorescent method using fluorescent GCPF for PA detection from 10 nM to 50 μM via fluorescence resonance energy transfer (FRET) strategy is established. The distance between donor of GCPF and acceptor of PA (R0 value) is calculated to be 3.5 nm. FRET method using fluorescent GCPF possesses high sensitivity (LOD of 2.8 nM), and selectivity and fast response within 2 min. Moreover, fluorescent GCPF is also utilized in visual analysis of PA using cotton swabs. Fluorescence quenching effect can be observed by eyes irradiated with 365 nm ultraviolet light at cotton swabs and using GCPF solid on quartz glasses, which paves an effect and wide way for the application of fluorescent GCPF in our daily life.

    关键词: Glutaraldehyde non-conjugated chitosan polymer fluorophores (GCPF),picric acid (PA),fluorescence resonance energy transfer (FRET),glutaraldehyde (GA),chitosan

    更新于2025-11-14 15:23:50