- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity <sup>*</sup>
摘要: We investigate strong exciton-plasmon coupling and plasmon-mediated hybridization between the Frenkel (F) and Wannier–Mott (WM) excitons of an organic-inorganic hybrid system consisting of a silver ring separated from a monolayer WS2 by J-aggregates. The extinction spectra of the hybrid system calculated by employing the coupled oscillator model are consistent with the results simulated by the finite-difference time-domain method. The calculation results show that strong couplings among F excitons, WM excitons, and localized surface plasmon resonances (LSPRs) lead to the appearance of three plexciton branches in the extinction spectra. The weighting efficiencies of the F exciton, WM exciton and LSPR modes in three plexciton branches are used to analyze the exciton-polaritons in the system. Furthermore, the strong coupling between two different excitons and LSPRs is manipulated by tuning F or WM exciton resonances.
关键词: coupled oscillator model,finite-difference time-domain method,localized surface plasmon resonances,plasmonic nanocavity,exciton-plasmon coupling,Frenkel excitons,organic-inorganic hybrid system,Wannier–Mott excitons
更新于2025-09-23 15:21:01
-
Ultrahigh brightening of infrared PbS quantum dots via collective energy transfer induced by a metal-oxide plasmonic metastructure
摘要: We demonstrate a solution-processed heterojunction interface formed via addition of a thin buffer layer of CdSe/ZnS quantum dots to a functional metal oxide plasmonic metastructure (FMOP) can set up a collective inter-quantum dot energy transport process, significantly enhancing the emission of infrared PbS quantum dots. The FMOP includes a Schottky junction, formed via deposition of a Si layer on arrays of Au nanoantennas, and a Si/Al oxide charge barrier. We show when these two junctions are separated from each other by about 15 nm and the CdSe/ZnS quantum dot buffer layer is placed in touch with the Si/Al oxide junction, the quantum efficiency of an upper layer of PbS quantum dots can increase by about one order of magnitude. These results highlight a unique energy circuit formed via collective coupling of the CdSe/ZnS quantum dots with the hybridized states of plasmons and diffraction modes of the arrays (surface lattice resonances) and coupling between such resonances with PbS QDs via lattice-induced photonic modes.
关键词: exciton-plasmon coupling,plasmons,collective,PbS quantum dots,metallic nanoantennas,surface lattice resonances,energy transfer
更新于2025-09-23 15:19:57
-
Manipulating Light–Matter Interactions in Plasmonic Nanoparticle Lattices
摘要: Rationally assembled nanostructures exhibit distinct physical and chemical properties beyond their individual units. Developments in nanofabrication techniques have enabled the patterning of a wide range of nanomaterial designs over macroscale (>in.2) areas. Periodic metal nanostructures show long-range diffractive interactions when the lattice spacing is close to the wavelength of the incident light. The collective coupling between metal nanoparticles in a lattice introduces sharp and intense plasmonic surface lattice resonances, in contrast to the broad localized resonances from single nanoparticles. Plasmonic nanoparticle lattices exhibit strongly enhanced optical fields within the subwavelength vicinity of the nanoparticle unit cells that are 2 orders of magnitude higher than that of individual units. These intense electromagnetic fields can manipulate nanoscale processes such as photocatalysis, optical spectroscopy, nonlinear optics, and light harvesting. This Account focuses on advances in exciton?plasmon coupling and light?matter interactions with plasmonic nanoparticle lattices. First, we introduce the fundamentals of ultrasharp surface lattice resonances; these resonances arise from the coupling of the localized surface plasmons of a nanoparticle to the diffraction mode from the lattice. Second, we discuss how integrating dye molecules with plasmonic nanoparticle lattices can result in an architecture for nanoscale lasing at room temperature. The lasing emission wavelength can be tuned in real time by adjusting the refractive index environment or varying the lattice spacing. Third, we describe how manipulating either the shape of the unit cell or the lattice geometry can control the lasing emission properties. Low-symmetry plasmonic nanoparticle lasing responses, and multiscale plasmonic superlattices—finite patches of lattices can show polarization-dependent nanoparticles grouped into microscale arrays—can support multiple plasmon resonances for controlled multimodal nanolasing. Fourth, we discuss how the assembly of photoactive emitters on the nanocavity arrays behaves as a hybrid materials system with enhanced exciton?plasmon coupling. Positioning metal?organic framework materials around nanoparticles produces mixed photon modes with strongly enhanced photoluminescence at wavelengths determined by the lattice. Deterministic coupling of quantum emitters in two-dimensional materials to plasmonic lattices leads to preserved single-photon emission and reduced decay lifetimes. Finally, we highlight emerging applications of nanoparticle lattices from compact, fully reconfigurable imaging devices to solid-state emitter structures. Plasmonic nanoparticle lattices are a versatile, scalable platform for tunable flat optics, nontrivial topological photonics, and modified chemical reactivities.
关键词: nanoscale lasing,surface lattice resonances,exciton?plasmon coupling,light?matter interactions,plasmonic nanoparticle lattices
更新于2025-09-16 10:30:52
-
Doubly-resonant plasmonic hot spot-exciton coupling enhances second harmonic generation from Au/ZnO hybrid porous nanosponges
摘要: We introduce zinc oxide (ZnO) functionalized porous gold nanoparticles which exhibit strong second harmonic (SH) emission due to an efficient coupling of localized surface plasmons to ZnO excitons. The nanosponges are perforated with a random network of 10-nm sized ligaments, localizing plasmons in a high density of hot spots. We use a broadband, few-cycle ultrafast laser to probe coherent nonlinear emission from individual bare gold and ZnO-functionalized sponges. While the third harmonic spectrum of the hybrid particles redshifts with respect to that of bare gold sponges, a distinct blueshift is seen in their SH spectra. SH emission around 390 nm, slightly below the ZnO band gap, is enhanced by ten times. We attribute this to doubly-resonant plasmon-exciton interactions: the laser drives nanosponge plasmon hot spot resonances and this locally enhanced field induces two-photon excitation of localized ZnO excitons. This opens a path towards the design of efficient coherent nonlinear optical sources by combining randomly-disordered nanoantennas with semiconductor gain materials.
关键词: exciton-plasmon coupling,Surface plasmons,third harmonic generation,zinc oxide,disordered nanoantennas,plasmon localization,nonlinear optics
更新于2025-09-12 10:27:22