- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Fatigue behavior improvements of laser-induction hybrid welded S690QL steel plates
摘要: In this paper, the improvements of fatigue performances of S690QL steel welded by laser-induction hybrid welding (LIHW) method were performed, mainly through the infrared imaging device to obtain the weld thermal cycle, fatigue machine to test the fatigue strength and scanning electron microscope to observe the fracture morphology. In fatigue tests, tension-tension fatigue loading and stress ratio R = 0.1 was selected. The LIHW fitted S-N curves were derived. It was found that the cracks with symmetrical grooves were initiated at the weld center (WC), while the single-laser welding (SLW) fatigue samples were fractured at the WC. However, the LIHW samples were finally fractured near heat-affected zone (HAZ). The fracture morphology of fatigue samples with stress amplitude of 108 MPa and 144 MPa were further selected to analysis. Due to different degree of defects or stress concentration, and different welding heat input absorption ability and cooling rate, in sudden fracture region, SLW fatigue samples mainly contained the brittle transient failure mode, LIHW fatigue samples mainly showed a ductile failure mode. It can thus be concluded that the LIHW method could improve the fatigue performance of S690QL steel joints.
关键词: Transient failure mode,Single-laser welding,Cracks,Laser-induction hybrid welding,Fatigue strength
更新于2025-09-23 15:19:57
-
Effects of laser peening on the fatigue strength and defect tolerance of aluminum alloy
摘要: The effects of laser peening (LP) on the bending fatigue strength of the 7075-T651 aluminum alloy were investigated. Accordingly, the defect tolerance of the aluminum alloy subjected to LP is discussed on the basis of fracture mechanics. The results indicate that a deeper compressive residual stress was induced by LP compared with the case of shot peening (SP). The fatigue strengths increased when both peening types were used. Semicircular slits with depths less than 0.4 and 0.1 mm were rendered harmless on the basis of the applications of LP and SP, respectively. The apparent threshold stress intensity factor range ΔKth,ap increased by approximately five and two times owing to LP and SP, respectively. The increase of the ΔKth,ap was caused by the compressive residual stress induced by the peening. The Kitagawa-Takahashi diagram of the laser-peened specimens shows that the defect tolerance of the aluminum alloy was improved by LP.
关键词: fatigue strength,laser peening,residual stress,shot peening,defect tolerance,aluminum alloy
更新于2025-09-16 10:30:52
-
Effect of Surface and Subsurface Defects on Fatigue Behavior of AlSi10Mg Alloy Processed by Laser Powder Bed Fusion (L-PBF)
摘要: The fatigue behaviour of an AlSi10Mg alloy processed by laser powder bed fusion (L-PBF) and subjected to different surface finishing processes was investigated paying special attention to the residual defects on the surface and the dominant fatigue failure mechanisms. Roughness measurements and qualitative surface morphology analysis showed smooth surfaces in the case of vibro-finishing and machining followed by polishing. The fatigue performance did not reveal to be directly related to surface roughness, but residual intrusions left on the finished surfaces. Post-mortem analysis showed single- or multiple-crack nucleation from pores opened on the surface, un-melted powders, or spatters considered as typical L-PBF defects. A fatigue limit of 195 MPa for machined and polished samples was obtained by substantial removal of surface and subsurface defects.
关键词: surface texture,laser powder bed fusion,AlSi10Mg alloy,surface finishing,fatigue strength
更新于2025-09-11 14:15:04