修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Multifunctional nanoplatforms for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis

    摘要: A multifunctional CO/thermo/chemotherapy nanoplatform is here reported, which is composed of mesoporous carbon nanoparticles (MCN) as near-infrared (NIR)-responsive drug carrier, doxorubicin (DOX) as chemotherapeutic drug and triiron dodecacarbonyl (FeCO) as thermosensitive CO prodrug. The nanoplatform could absorb near-infrared (NIR) light and convert it into ample heat to trigger CO release and could also release DOX in the acidic tumor microenvironment. More importantly, the generated CO molecules successfully increase cancer cell sensitivity to chemotherapeutics by the ferroptosis pathway. Subsequently, under the guidance of photoacoustic imaging, the FeCO-DOX@MCN nanoplatform demonstrates high treatment efficacies in vitro and in vivo by combination of chemotherapy, photothermal therapy and gas therapy. This multifunctional platform with excellent antitumor efficacy has great potential in precision cancer therapy.

    关键词: Mesoporous materials,Ferroptosis,Controlled release,Photothermal therapy,Carbon monoxide

    更新于2025-09-23 15:22:29

  • Ferrous-Supply-Regeneration Nanoengineering for Cancer Cell Specific Ferroptosis in Combination with Imaging-Guided Photodynamic Therapy

    摘要: Non-apoptotic ferroptosis is of clinical importance because it offers a solution to surmount the inevitable bio-carriers of traditional apoptotic therapeutic means. Inspired by industrial Electro-Fenton technology featured with electrochemical iron cycling, we construct a ferrous-supply-regeneration nanoengineering to intervene tumorous iron metabolism for enhanced ferroptosis. Fe3+ ion and naturally derived tannic acid (TA) spontaneously form network-like corona onto sorafenib (SRF) nanocore. The formed SRF@FeIIITA nanoparticles can respond to lysosomal acid environment with corona dissociation, permitting SRF release to inhibit GPX4 enzyme for ferroptosis initiation. TA is arranged to chemically reduce the liberated and the ferroptosis-generated Fe3+ to Fe2+, offering iron redox cycling thus to effectively produce lipid peroxide required in ferroptosis. Sustained Fe2+ supply leads to long-term cytotoxicity, which is identified to be specific to H2O2-overloaded cancer cells but minimal in normal cells. SRF@FeIIITA-mediated cell death proves to follow ferroptosis pathway and strongly inhibits tumor proliferation. Moreover, SRF@FeIIITA provides a powerful platform capable of versatile integration between apoptosis and non-apoptosis means. Typically, photosensitizer-adsorbed SRF@FeIIITA demonstrates rapid tumor imaging owing to the acid-responsive fluorescence recovery. Together with ferroptosis, imaging-guided photodynamic therapy induces complete tumor elimination. This study offers ideas about how to advance anticancer ferroptosis through rational material design.

    关键词: iron redox cycling,iron-tannic acid network,photodynamic therapy,ferroptosis,Electro-Fenton technology

    更新于2025-09-23 15:21:01

  • Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis

    摘要: Background: There are different treatments for breast cancer and melanoma that mostly have some side effects. One of the therapeutic strategies is the use of natural components. Phenol components are a class of antioxidants in plants that have many biological functions like anticancer effects. Gallic acid (GA) is a natural polyhydroxy phenolic compound and commonly found in various foods. In the present study, GA effects alone and in combination with low-level laser irradiation on human dermal fibroblast cell line (HDF), human non-tumorigenic breast epithelial cell line (MCF10A), breast cancer cell line (MDA-MB-231) and melanoma cancer cell line (A375) was under the investigation. Methods: The normal and cancerous cell lines were exposed to 660 nm low-level laser with 3 J/cm2 for 90 s. Then, the cells were treated with different concentrations of GA for 24 h. In another study, the cell lines firstly were treated with GA and then exposed to low-level laser irradiation. The effects of GA and low-level laser on cell survival and apoptosis were examined using MTT assay, light microscopy, ROS production assay, fluorescence microscopy (AO/EB double staining) and flow cytometry. Results: The results showed that pre-treatment with low-level laser and then GA reduced the survival of breast cancer cells and melanoma more than the first treatment with GA and then low-level laser irradiation. Our findings showed that ROS production in cells treated with both low-level laser and GA was more than the cells treated with GA alone. The apoptosis and ferroptosis assays confirmed the MTT results which combination treatment with low-level laser and then GA increase the cell death probably via apoptosis and ferroptosis cell death mechanisms compared to GA alone. Conclusions: This study suggests that low-level laser irradiation alone is not able to cause death in human normal and cancerous cells. Preirradiation followed by GA treatment did not change the cell viability in human normal significantly but reduces the cell survival of cancer cells more than GA alone.

    关键词: Breast cancer,Apoptosis,Low level laser irradiation,Ferroptosis,Melanoma cancer,Gallic acid

    更新于2025-09-19 17:13:59