- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Highly Flexible and Transparent Memristive Devices using Cross-Stacked Oxide/Metal/Oxide Electrode Layers
摘要: Flexible and transparent memristive devices (FT-memristors) are considered to be among promising candidates for future nonvolatile memories. To realize these devices, it is essential to achieve flexible and transparent conductive electrodes (TCEs). However, conventionally-used TCEs such as indium tin oxide, gallium zinc oxide, and indium zinc oxide are not so flexible and even necessitate thermal annealing for high conductivity and optical transmittance. Here, we introduce Ag/ZnO/Ag and Ag/Al2O3/Ag-based FT memristors using cross-stacked oxide/metal/oxide electrode layers (i.e., ZnO/Ag/ZnO + ZnO/Ag/ZnO and Al2O3/Ag/Al2O3 + Al2O3/Ag/Al2O3) without using any annealing process on polyethylene terephthalate substrates (PETs). Both Ag/ZnO/Ag- and Ag/Al2O3/Ag-based FT-memristors on PETs exhibited excellent properties, including high transmittance (> 86% in the visible region), high ON/OFF current ratios (> 103), and long retention times (> 105 s). In addition, they showed very stable and flexible characteristics on PETs even after 2500 bending cycles with a bending radius of 8.1 mm. Finally, we analyzed transmission electron microscopy images and time-of-flight secondary ion mass spectroscopy profiles to identify switching mechanisms in these devices.
关键词: Al2O3/Ag/Al2O3,filament,memristive device,Transparent and flexible electrode,ZnO/Ag/ZnO
更新于2025-09-23 15:23:52
-
New fabrication method for producing reduced graphene oxide flexible electrodes by using low-power visible laser diode engraving system
摘要: The fabrication of bendable electronic devices is being a scientific-technological area of very rapid advance in which new materials and fabrication techniques are being continuously developed. In this kind of devices, the fabrication of flexible conductive electrodes adherent to the substrate is a key factor. Besides, eco-friendliness, low cost and fast production are essential requirements for the successful progress of new technologies. In this work, a novel method for obtaining graphene-based flexible electrodes is presented. Conductive films were obtained by means of visible laser irradiation of graphene oxide layers deposited on polyethylene terephthalate substrates besides self-standing membranes sandwiched between glass slides. Despite the low power of the laser system, numerical simulations indicate the development of temperatures over 1000 K throughout the irradiated material. The laser-induced spatially confined heating leads to the reduction of the graphene oxide material whereas the glass-based sandwich assembly avoids reoxidation from surrounding air. By scanning and pixelated modes, reduced graphene oxide electrodes, up to 100 μm in thickness, and with resistivity as low as 6×10-4 ?m were obtained in an easy and versatile way. Proof-of-concept microsupercapacitors and electrochemical sensors were fabricated with this technique, showing promising performance.
关键词: laser fabrication,flexible electrode,laser-reduced graphene oxide,graphene electrode
更新于2025-09-23 15:21:01
-
The low resistance and high sensitivity in stretchable electrode assembled by liquid-phase exfoliated graphene
摘要: Flexible electrodes have been extensively investigated to fulfill the development of highly advanced human interaction electronics. It’s still a challenge to develop the conductive film for the scalable device with low resistance under large deformation. In this work, we reported a stretchable conductive layer on elastomer substrates assembled by few-layer graphene, which was exfoliated in the low-boiling organic solvent with assistance of hyperbranched copolymer as stabilizer that was adsorbed on the nanosheets via CH-π non-covalent connections. The relative resistance change of graphene film is 117% as the mechanical strain reaches 35%, which retains high conductivity under tensile operation. The resistance of the graphene electrode is dependent on the overlapping of the nanosheets during the deformation, in which the slipping of nanosheets is due to the lubricant effect of the hyperbranched segments acting as dynamic CH-π interactions. This work highlights a general strategy of the stretchable conductive film for the flexible electronics, and sheds a light on the conduction mechanism for the graphene film during large deformation.
关键词: Stretchable,Graphene,Flexible electrode,Hyperbranched polymer
更新于2025-09-23 15:21:01
-
Wrinkled titanium nitride nanocomposite for robust bendable electrodes
摘要: Electrical contacts and interconnections are critical components for all electronic devices. Bendable electrodes with enhanced electro-mechanical properties are highly desirable to develop innovative wearable electronic devices. Herein we report on a fabrication method for robust bendable coatings based on titanium nitride (TiN) thin films and silver nanowires (Ag NWs). TiN and TiN-AgNWs nanocomposites were deposited on polyethylene terephthalate (PET) substrates using a plasma enhanced pulsed laser deposition (PLD) technique. The resulting TiN coatings exhibit excellent adhesion to PET and their sheet resistance can be tuned using a dual frequency PLD process and further decreased by incorporating Ag NWs into the TiN layers. Sample sheet resistance was decreased down to values as low as 3.5 Ω/□, thanks to the formation of TiN-AgNWs nanocomposites. The electro-mechanical robustness of TiN based coatings were evaluated by four-probe resistance measurements in situ under cyclic bending tests. We show that the TiN-AgNWs nanocomposites surpass both ITO and Ag NWs coatings in terms of mechanical robustness and electrical conductivity respectively. These nanocomposites withstand high strain fatigue loading up to ε = 2.6%, keeping RS below 5 Ω/□. The data demonstrates that the incorporation of Ag NWs in TiN coatings improve the mechanical robustness, limiting the crack growth and propagation, with low optical transmittance decrease (≈11%). These results indicate that Ag NWs based nanocomposites are attractive materials for flexible electronic devices.
关键词: mechanical strain,titanium nitride,nanocomposite,ITO,flexible electrode,silver nanowires
更新于2025-09-19 17:13:59
-
Highly Efficient Flexible Perovskite Light-Emitting Diodes Using Modified PEDOT:PSS Hole Transport Layer and Polymer-Silver Nanowires Composite Electrode
摘要: Metal halide perovskites have been actively studied as promising materials in optoelectronic devices because of their superior optical and electrical properties, and have also shown considerable potential for flexible devices because of their good mechanical properties. However, the large hole injection barrier and exciton quenching between the perovskite emitter and poly(3,4-ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS) can lead to the reduction in device efficiency. Here, a nonconductive fluorosurfactant, Zonyl FS-300 (Zonyl), is introduced into the PEDOT:PSS hole transport layer, which reduces the hole injection barrier and exciton quenching at the PEDOT:PSS/perovskite interface. Moreover, a flexible perovskite light-emitting diode with a polymer–silver nanowire composite electrode is demonstrated, showing a maximum current efficiency (CEmax) of 17.90 cd A–1, and this is maintained even after 1,000 cycles of bending with a 2.5 mm bending radius.
关键词: flexible perovskite light-emitting diodes,hole transport layer,flexible electrode,silver nanowires (AgNWs),poly(3,4-ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS)
更新于2025-09-16 10:30:52
-
Stabilisation of Cu films in WO3/Ag/Cu:Al/WO3 structures through their doping by Al and Ag
摘要: Indium tin oxide (ITO) is the most common transparent conductive material used in industrial processes. It has many advantages, but also some disadvantages: Indium is scarce and ITO deposition techniques are aggressive for organic materials, making it difficult to use it as top electrode in organic devices. Moreover its ceramic structure limits its application in flexible devices. Among the possible new In free transparent conductive electrode, dielectric/metal/dielectric multilayer structures such as WO3/M/WO3 appear very promising. However, silver, which is the metal the more often used is expensive. Therefore it would be very profitable if copper, which is abundant on earth, could be substituted for silver. However the stability with time of the structure using Cu is questionable due to the high Cu diffusivity. In the present manuscript we improve significantly the lifetime of the structures using the alloy Cu:Al when a thin silver layer (2 nm) is introduced between the WO3 bottom layer and the Cu:Al. It is shown that the Cu atom mobility is significantly decreased by the presence of Al of the alloy and of Ag which appears to diffuse into the metal layer forming an eutectic with Cu.
关键词: Copper aluminum alloy,Tungsten oxide,Indium tin oxide-free,Transparent electrode,Multilayer structures,Flexible electrode
更新于2025-09-10 09:29:36
-
High-Performance Transparent and Flexible Electrodes Made by Flash-Light Sintering of Gold Nanoparticles
摘要: Metallic nanowire-based transparent electrodes (TEs) are potential alternatives to indium tin oxide (ITO). To achieve a high performance [sheet resistance (Rs) <100 Ω/sq, transmittance (T%) > 90%], the nanowires must have a high length-to-diameter (L/D) ratio to minimize the number of wire-to-wire junctions. Attempts to produce TEs with gold nanowires have been made, and the results reveal difficulties in achieving the requirements. A successful strategy involves creating templated gold nanonetworks through multiple procedures. Here, we present a simple and efficient method that uses flash-light sintering of a gold nanonetwork film into gold TEs (Rs: 82.9 Ω/sq, T%: 91.79%) on a thin polycarbonate film (25 μm). The produced gold TEs have excellent mechanical, electrical, optical and chemical stabilities. Mechanisms of the formation of gold nano-networks and the effect of flash-light have been analyzed. Our findings provide a scalable process for producing transparent and flexible gold electrodes with a total processing time of less than 8 min without the use of heating, vacuum processing, organic chemicals and without any material loss. This is possible because all the gold nanoparticles have been aggregated and filtrated on the filter membranes. The area density of gold is 0.094 g/m2 leading low material costs, which is very competitive with the price of commercial TEs.
关键词: flexible electrode,high performance,transparent electrode,gold nanoparticles,flash-light sintering
更新于2025-09-04 15:30:14
-
A highly bendable transparent electrode for organic electrochromic devices
摘要: In this article, we report a thin film of polyaniline (PANI)-grafted single-walled/double-walled carbon nanotubes (CNTs) on polyethylene terephthalate (PET) as a transparent electrode for highly bendable electrochromic films. Our results show that the high conductivity of the PANI-CNT/PET electrode brought by its conductive CNT network, as well as the strong conjugation between CNTs and PANI, can be well retained even after 9,000 cycles of bending with a bending radius of 0.6 cm, which is superior to that of the most widely used transparent electrode, indium tin oxide (ITO) on PET. By electrodeposition of PANI on the PANI-CNT/PET electrode, the overall electrochromic performance of the PANI-deposited PANI-CNT/PET (PANI/PANI-CNT/PET) is comparable to its PANI/ITO/PET counterpart, whereas after 100 cycles of bending, PANI/PANI-CNT/PET can much better retain its initial electrochromic performance than PANI/ITO/PET. The mechanism for the enhanced bendability is studied via impedance analysis. It shows that the enhancement is mainly due to the robust interface between the PANI-based electrode and active layer. The findings provide a new avenue for rational design of highly bendable electrodes for flexible electrochromic devices.
关键词: bendable,polyaniline,electrochromic,carbon nanotube,flexible electrode
更新于2025-09-04 15:30:14