- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Reversible/Irreversible Photobleaching of Fluorescent Surface Defects of SiC Quantum Dots: Mechanism and Sensing of Solar UV Irradiation
摘要: Knowledge about photobleaching properties of the fluorescent surface defects of the semiconductor quantum dots (QDs) is crucial for their applications. Here, the photobleaching properties of the fluorescent surface defects of the colloidal 3C-SiC QDs are reported. The combined experimental and theoretical study reveals that the observed violet fluorescence at around 392 nm stems from the carboxylic acid group-related surface defects. When the SiC QDs are exposed to the UV irradiation, the 392 nm fluorescent surface defects show both reversible and irreversible photobleaching, whereas the 438 nm fluorescent surface defects show only irreversible photobleaching. The photochemical mechanisms dominating these phenomena are explored. The photobleaching property of the SiC QDs is utilized to detect the solar UV irradiation with high accuracy. The photobleaching of the SiC QDs is highly sensitive to the hydrogen or metal ion concentration in the colloid solution. These findings deepen the understanding of the properties of the fluorescent surface defects of the SiC QDs and pave the way for their applications in sensing.
关键词: photobleaching,silicon carbide quantum dots,surface defects,fluorescence mechanism
更新于2025-11-19 16:46:39
-
Facile synthesis of yellow emissive carbon dots with high quantum yield and their application in construction of fluorescence-labeled shape memory nanocomposite
摘要: Synthesizing carbon dots (CDs) with efficient long-wavelength emissions (i.e., yellow- to red light) generally suffer from sophisticated approaches, time-consuming process, harsh conditions, and requirement of organic solvent; also, a further limitation of the resulting CDs is relatively low quantum yield (QY) in aqueous solution. Herein, novel yellow emitting CDs (Y-CDs) with a considerable QY of 62.8% were synthesized from a precursor comprising resorcinol and o-phenylenediamine via a facile microwave method. To probe the fluorescence mechanism, another typical resorcinol-derived CDs using ethylenediamine as dopant were fabricated as well, showing strong green emission with an absolute QY of 60.6%. Spectroscopic and structural characterizations indicated that the distinct redshift of green to yellow emission depended on the dimension of conjugated sp2-domain and the content of graphitic N heavily, while the excellent QY was highly related to the low proportion of defective sp2 carbon cluster and high nitrogen content within CDs. Moreover, the Y-CDs were confirmed to be capable of introducing additional crosslinking points in poly(vinyl alcohol) (PVA) polymer, which resulted in the Y-CDs-contained nanocomposite behaving superior and tunable water-induced shape recovery performances. Importantly, since being labeled with long-wavelength emission, the responsiveness of PVA/Y-CDs composite will contribute to its versatile utilization in biology-relevant fields.
关键词: shape recovery,fluorescence mechanism,yellow emission,carbon dots,nanocomposite
更新于2025-11-14 15:23:50