- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
In Situ Enzyme Immobilization with Oxygen‐Sensitive Luminescent Metal–Organic Frameworks to Realize “All‐in‐One” Multifunctions
摘要: Metal-organic frameworks (MOFs) for enzyme immobilization have already shown superior tunable and designable characteristics, however, their devisable responsive properties have rarely been exploited. Herein, we integrated a responsive MOF into MOF-enzyme composite to propose an “all-in-one” multifunctional composite with catalytic and luminescence functions implemented within a single particle. As a proof-of-concept, glucose oxidase (GOx) was in situ encapsulated within an oxygen (O2)-sensitive, noble-metal-free luminescent Cu(I) triazolate framework (MAF-2), namely GOx@MAF-2. Owing to the rigid scaffold of MAF-2 and the confinement effect, the GOx@MAF-2 composite showed significantly improved stability (shelf life to 60 days and heat-resistance up to 80 oC) with good selectivity and recyclability. More importantly, the integration of the O2-sensitivity of MAF-2 allowed the GOx@MAF-2 composite rapidly and reversibly response toward dissolved O2, which realized direct and ratiometric sensing of glucose without the needs of chromogenic substrates, cascade enzymatic reactions or electrode system. A high sensitivity with a detection limit of 1.4 μM glucose was achieved, and the glucose in human sera was accurately determined. The strategy opens a new application of MOFs and can be facilely extended to various MOF-enzyme composites due to the multifunctionality of MOFs.
关键词: enzyme immobilization,metal-organic frameworks,all-in-one multifunctions,glucose detection,fluorometric sensor
更新于2025-11-21 11:08:12
-
A colorimetric and fluorometric oligothiophene-indenedione-based sensor for rapid and highly sensitive detection of cyanide in real samples and bioimaging in living cells
摘要: A new simple oligothiophene-indenedione-based sensor 3TI has been synthesized for the highly reactive and selective detection of cyanide anion (CN?) in 70% aqueous media. The sensor 3TI displays distinct colorimetric and fluorometric detection of CN? due to the addition of CN? to the electron-deficient indenedione-vinyl group of 3TI, which hampers intramolecular charge transfer (ICT) efficiencies. The recognition mechanism of 3TI for CN? was confirmed by the optical measurements, 1H NMR titration, FTIR spectra, HRMS analysis, and TD-DFT calculations. The sensor 3TI for CN? shows the outstanding advantages of high fluorescence brightness, fast response time (30 s), low detection limit (31.3 nM), minimal pH dependence in the physiologically relevant range, and excellent selectivity in presence of other competitive anions. Encouraged by these desirable sensing properties, the 3TI has been successfully used for determination of CN? in real water and food samples, silica-based sensing kits and fluorescence imaging in living cells with satisfactory results.
关键词: Fluorometric sensor,Cyanide,Oligothiophene-indenedione,Colorimetric sensor,Real sample,Live-cell imaging
更新于2025-09-23 15:23:52