- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI) - Toyama, Japan (2019.7.7-2019.7.11)] 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI) - Phase Type Special-Purpose Computer for Electroholography in Embedded Systems
摘要: This paper is the fifth in a series of articles on the basic physics of light yield nonproportionality in scintillators. Here, we compare and contrast the nonproportionality as registered by gamma rays and high-energy electrons. As has been noted in the past, these two types of data have different curve shapes (for plots of the light yield against electron or gamma energy). Herein, we show how the experimental gamma nonproportionality curve can be calculated from the electron response by accounting for the distribution of high energy electrons created by the gamma photon via the photoelectric interaction. Similarly, we measure and model the gamma-induced resolution as a function of energy and compare this data to predictions from our model. The utility of the model is explored using data acquired with the scintillators (Eu), GYGAG(Ce) and CsI(Na).
关键词: Gamma ray detectors,solid scintillation detectors,luminescence
更新于2025-09-23 15:21:01
-
High-selectivity bandpass filter using six pairs of quarter-wavelength coupled lines
摘要: We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The pixel array ROIC is the proof of concept of the pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC m mixed-signal CMOS technology and occupies an area of mm. The TDC shows a resolution mm of 95.5 ps, a precision of 600 ps at full width half maximum W. In acquisition (FWHM), and a power consumption of mode, the total power consumption of every pixel is W. An equivalent noise charge (ENC) of at maximum gain and negative polarity conditions has been measured at room temperature.
关键词: positron emission tomography,low-power electronics,semiconductor radiation detectors,application specific integrated circuits,gamma-ray detectors,Analog-digital conversion,energy resolution
更新于2025-09-23 15:21:01
-
[IEEE 2019 International Conference on Optical MEMS and Nanophotonics (OMN) - Daejeon, Korea (South) (2019.7.28-2019.8.1)] 2019 International Conference on Optical MEMS and Nanophotonics (OMN) - Monolithic integration of III-V microdisk lasers on silicon
摘要: Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use keV -rays as a proxy for penetrating radiation such as -rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We ?nd that MCP detectors are times more sensitive to keV -rays than CEM detectors. This is attributed to the larger total area of multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum ef?ciency keV -rays is found to be 0.00175 and largely independent of detector bias, the quantum ef?ciency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.
关键词: radiation effects,Electron multipliers,gamma-ray effects,plasma measurements
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Doped Layer Characterization Using Accurate Optical Modelling of Mid-Infrared Spectrometry
摘要: We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The pixel array ROIC is the proof of concept of the pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), con?guration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, ?ve global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC m mixed-signal CMOS technology and occupies an area of mm. The TDC shows a resolution mm of 95.5 ps, a precision of 600 ps at full width half maximum W. In acquisition (FWHM), and a power consumption of mode, the total power consumption of every pixel is W. An equivalent noise charge (ENC) of at maximum gain and negative polarity conditions has been measured at room temperature.
关键词: positron emission tomography,low-power electronics,application speci?c integrated circuits,semiconductor radiation detectors,gamma-ray detectors,Analog-digital conversion,energy resolution
更新于2025-09-23 15:21:01
-
Solar hard X-ray imaging by means of compressed sensing and finite isotropic wavelet transform
摘要: Aims. Compressed sensing realized by means of regularized deconvolution and the finite isotropic wavelet transform is effective and reliable in hard X-ray solar imaging. Methods. The method uses the finite isotropic wavelet transform with the Meyer function as the mother wavelet. Furthermore, compressed sensing is realized by optimizing a sparsity-promoting regularized objective function by means of the fast iterative shrinkage-thresholding algorithm. Eventually, the regularization parameter is selected by means of the Miller criterion. Results. The method is applied against both synthetic data mimicking measurements made with the Spectrometer/Telescope Imaging X-rays (STIX) and experimental observations provided by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The performances of the method are qualitatively validated by comparing some morphological properties of the reconstructed sources with those of the corresponding synthetic configurations. Furthermore, the results concerning experimental data are compared with those obtained by applying other visibility-based reconstruction methods. Conclusions. The results show that when the new method is applied to synthetic STIX visibility sets, it provides reconstructions with a spatial accuracy comparable to the accuracy provided by the most popular method in hard X-ray solar imaging and with a higher spatial resolution. Furthermore, when it is applied to experimental RHESSI data, the reconstructions are characterized by reliable photometry and by a notable reduction of the ringing effects caused by the instrument point spread function.
关键词: techniques: image processing,Sun: X-rays, gamma rays,Sun: flares
更新于2025-09-23 15:21:01
-
Characterization of monolithic GAGG:Ce coupled to both PMT and SiPM array for gamma imaging in Nuclear Medicine
摘要: GaGG:Ce scintillation crystal is very useful for nuclear imaging purposes, thanks to its several advantages (high density, short decay time, high light yield and good energy resolution, no self-activity, no hygroscopic). However, only the recent improvements in the growth processes make it available with large size, in order to use it in monolithic configuration. The main drawbacks of pixelated crystals, as non-uniform response, high production costs and optical light loss, could be therefore overcome. In this work the characterization of this promising crystal coupled both to a single channel PMT (spectrometric purpose) and to a new technology SiPM (50% PDE and 74% geometrical fill factor) has been performed. The detection efficiency results good both for SPECT (87% at 122 keV) and for PET (18% at 356 keV) applications. However, the unexpected result arises from the energy resolution: at 356 keV 8.9% and 8.0% for single channel PMT and SiPM configuration, respectively. In other terms, the used SiPM allows to achieve higher energy resolution than single channel PMT. Moreover, a high imaging performance has been observed, with a millimeter intrinsic spatial resolution.
关键词: SPECT,PET PET/CT,Gamma camera,Intra-operative probes,Scintillators and scintillating fibres and light guides,coronary CT angiography (CTA),Scintigraphy and whole-body imaging
更新于2025-09-23 15:21:01
-
Tests under irradiation of optical fibers and cables devoted to corium monitoring in case of severe accident in a Nuclear Power Plant
摘要: The DISCOMS project, which stands for “DIstributed Sensing for COrium Monitoring and Safety”, considers the potential of distributed sensing technologies, based on remote instrumentations and Optical Fiber Sensing cables embedded into the concrete floor under the reactor vessel, to monitor the status of this third barrier of confinement. This paper focuses on the selection and testing of singlemode (SM) optical fibers with limited RIA (Radiation Induced Attenuation) to be compliant with remote distributed instruments optical budgets, the ionizing radiation doses to sustain, and their reduction provided by the concrete basemat shielding. The tests aimed at exposing these fibers and the corresponding sensitive optical cables, to the irradiation doses expected during the normal operation of the reactor (up to 60 years for the European Pressurized Reactor), followed by a severe accident. Several gamma and mixed (neutron-gamma) irradiations were performed at CEA Saclay facilities: POSé?DON irradiator and ISIS reactor, up to a gamma cumulated dose of about 2 MGy and fast neutron fluence (E > 1 MeV) of 6 x 1015 n/cm2. The first gamma test permitted to assess the RIA at various optical wavelengths, and to select three radiation tolerant singlemode fibers (RIA < 5 dB/100 m, at 1550 nm operating wavelength). The second one was performed on voluminous strands of sensitive cables encapsulating selected optical fibers, up to approximately the same accumulated dose, at two temperatures: 30°C and 80°C. A significant increase of the RIA, without any saturation tendency, appeared for fibers inserted into cables, correlated with the increase of the hydroxyl attenuation peak at 1380 nm. Molecular hydrogen generated by the radiolysis of compounds of the cable is at the origin of this phenomenon. A third gamma irradiation run permitted to measure the radiolytic hydrogen production yield of some compounds of a dedicated temperature cable sample. The efficiency of a carbon coating layer over the silica cladding, acting as a barrier against hydrogen diffusion, was also successfully confirmed. Finally, the efficiency of this carbon coating layer has also been tested under neutron irradiation, then qualified as a protection barrier against hydrogen diffusion in the optical fiber cores.
关键词: carbon coating layer,radiation effects,optical fibers,hydrogen diffusion,gamma,radiolysis,rad-hard optical fiber,neutron,distributed measurement
更新于2025-09-23 15:21:01
-
Organohalide Lead Perovskites: More Stable than Glass under Gamma-Ray Radiation
摘要: Organohalide metal perovskites have emerged as promising semiconductor materials for use as space solar cells and radiation detectors. However, there is a lack of study of their stability under operational conditions. Here a stability study of perovskite solar cells under gamma-rays and visible light simultaneously is reported. The perovskite active layers are shown to retain 96.8% of their initial power conversion efficiency under continuous irradiation of gamma-rays and light for 1535 h, where gamma-rays have an accumulated dose of 2.3 Mrad. In striking contrast, a glass substrate shows obvious loss of transmittance under the same irradiation conditions. The excellent stability of the perovskite solar cells benefits from the self-healing behavior to recover its efficiency loss from the early degradation induced by gamma-ray irradiation. Defect density characterization reveals that gamma-ray irradiation does not induce electronic trap states. These observations demonstrate the prospects of perovskite materials in applications of radiation detectors and space solar cells.
关键词: gamma-ray radiation,solar cells,self-healing,organohalide perovskites,outer space,stability
更新于2025-09-23 15:21:01
-
Texture analysis for automated evaluation of Jaszczak phantom SPECT system tests
摘要: Purpose: Routine quarterly quality assurance (QA) assessment of single photon emission computed tomography (SPECT) systems includes analysis of multipurpose phantoms containing spheres and rods of various sizes. When evaluated by accreditation agencies, criteria applied to assess image quality are largely subjective. Determining a quantified image characteristic metric that emulates human reader impressions of image quality could be quite useful. Our investigation was conducted to ascertain whether image texture analysis metrics, such as those applied to PET scans to detect neoplasms, could prove helpful in linking qualitative statements of phantom sphere and rod visibility to quantified parameters. Because it is not obvious whether it is preferable to submit reconstructions to accrediting agencies performed using typical clinical (CLIN) protocol processing parameters or to follow agencies' filtered backprojection (FBP) suggestions we applied texture analysis metrics to determine the degree to which these choices affect equipment capability assessment.
关键词: phantom,image texture analysis,accreditation,inter-observer agreement,gamma camera,automated,quality assurance
更新于2025-09-23 15:21:01
-
Detectors on the Basis of High-Purity Epitaxial GaAs Layers for Spectrometry of X and Gamma Rays
摘要: The characteristics of detectors of soft-X and γ rays based on high-purity epitaxial GaAs layers are discussed. The characteristics of detectors with different rectifying contacts are compared, that is, those with a Schottky barrier and a p–n junction. The spectral characteristics of the manufactured detectors that were obtained under the irradiation by 57Co and 241Am sources at different bias voltages and in a photovoltaic mode and the simulation results using the Geant 3.21 software package are presented.
关键词: photovoltaic mode,Geant 3.21,Schottky barrier,high-purity epitaxial GaAs layers,spectrometry,X and Gamma Rays,p–n junction
更新于2025-09-23 15:21:01