- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Localized Surface Plasmon Resonance Sensor Based at Metallic Sphere Dimer Particle
摘要: By the cooling holes in aero-engine turbine blade as the research object, this study focuses on two kinds of electrochemical machining(ECM) methods, which are mix gas added to the nonlinear electrolyte (NaNO3) and non-mixed gas. Mixed and non-mixed gas ECM experiments of turbine blade cooling holes were carried out respectively. The corresponding two-dimensional CAD model of cooling hole was constructed combined with the experimental data and theoretical analysis. Numerical simulation analysis was carried out of the flow field base on the above models by using the fluid dynamics analysis software FLUENT. The influence flow velocity and flow velocity distribution on the machining accuracy and efficiency of ECM were investigated in detail. The vortex zone distribution of gas-NaNO3 mixed phase flow field and single NaNO3 solution flow field was analyzed qualitatively. The simulation results indicated that the flow velocity in the machining gap with mixed gas was significantly higher than the velocity during ECM process for cooling holes. The electrolytic products and heat were washed away completely, the electrolyte can be updated in time. Fluid vortex zone distribution was improved obviously, the flow field distribution became more uniform after mixed gas in ECM process. The machining accuracy and efficiency for cooling holes making may be improved greatly with gas mixed in electrolyte NaNO3.
关键词: electrolytic machining,mixed gas,cooling hole,gas-liquid two-phase flow,CFD
更新于2025-09-23 15:22:29
-
3D Reconstruction of Slug Flow in Mini-Channels with a Simple and Low-Cost Optical Sensor
摘要: The present work provides a new approach for 3D image reconstruction of gas-liquid two-phase flow (GLF) in mini-channels based on a new optical sensor. The sensor consists of a vertical and a horizontal photodiode array. Firstly, with the optical signals obtained by the vertical array, a measurement model developed by Support Vector Regression (SVR) was used to determine the cross-sectional information. The determined information was further used to reconstruct cross-sectional 2D images. Then, the gas velocity was calculated according to the signals obtained by the horizontal array, and the spatial interval of the 2D images was determined. Finally, 3D images were reconstructed by piling up the 2D images. In this work, the cross-sectional gas-liquid interface was considered as circular, and high-speed visualization was utilized to provide the reference values. The image deformation caused by channel wall was also considered. Experiments of slug flow in a channel with an inner diameter of 4.0 mm were carried out. The results verify the feasibility of the proposed 3D reconstruction method. The proposed method has the advantages of simple construct, low cost, and easily multipliable. The reconstructed 3D images can provide detailed and undistorted information of flow structure, which could further improve the measurement accuracy of other important parameters of gas-liquid two-phase flow, such as void fraction, pressure drop, and flow pattern.
关键词: Support Vector Machine,3D image reconstruction,gas-liquid two-phase flow,mini-channels,optical sensor,slug flow
更新于2025-09-11 14:15:04