- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2018
- energy distribution
- graphene edge
- vacuum transistor
- Field emission
- Optoelectronic Information Science and Engineering
- Naval Research Laboratory
- KeyW Corporation
- Pohang University of Science and Technology (POSTECH)
-
A Label-Free Fluorescent DNA Machine for Sensitive Cyclic Amplification Detection of ATP
摘要: In this study, a target recycled ampli?cation, background signal suppression, label-free ?uorescent, enzyme-free deoxyribonucleic acid (DNA) machine was developed for the detection of adenosine triphosphate (ATP) in human urine. ATP and DNA fuel strands (FS) were found to trigger the operation of the DNA machine and lead to the cyclic multiplexing of ATP and the release of single stranded (SS) DNA. Double-stranded DNA (dsDNA) was formed on graphene oxide (GO) from the combination of SS DNA and complementary strands (CS(cid:48)). These double strands then detached from the surface of the GO and in the process interacted with PicoGreen dye resulting in amplifying ?uorescence intensity. The results revealed that the detection range of the DNA machine is from 100 to 600 nM (R2 = 0.99108) with a limit of detection (LOD) of 127.9 pM. A DNA machine circuit and AND-NOT-AND-OR logic gates were successfully constructed, and the strategy was used to detect ATP in human urine. With the advantage of target recycling ampli?cation and GO suppressing background signal without ?uorescent label and enzyme, this developed strategy has great potential for sensitive detection of different proteins and small molecules.
关键词: cyclic ampli?cation,ATP detection,DNA machine,label-free ?uorescence,graphene oxide,logic gate
更新于2025-11-19 16:46:39
-
Graphene quantum dots and carbon nano dots for the FRET based detection of heavy metal ions
摘要: We demonstrate the development of a FRET based novel optical sensing system for the efficient detection of heavy metal pollutants. The studied sensing system is comprised of graphene quantum dots (GQDs) as donor and carbon nano dots (C-Dots) as an acceptor component. When these fluorescent nano-dots are within the FRET distance, fluorescence of the donor GQDs is quenched by the non-radiative energy transfer to acceptor C-Dots. Fluorescence lifetime is measured by time resolved photo-luminescence spectroscopic study to validate the FRET efficacy of the mix dot based sensor system. Upon gradual addition of heavy metals like arsenic (As5+) and mercury (Hg2+) into this sensor system, a significant amount of reduction in the investigated FRET signal is experienced. The detailed mechanisms of the molecular interactions between GQDs and C-Dots are thoroughly studied by UV–Visible absorption, infrared, steady state and time resolved spectroscopy.
关键词: FRET,Carbon nano dot,Metal ions,Sensor,Graphene quantum dot
更新于2025-11-19 16:46:39
-
A magnetically recoverable CaTiO<sub>3</sub>/reduced graphene oxide/NiFe<sub>2</sub>O<sub>4</sub> nanocomposite for the dye degradation under simulated sunlight irradiation
摘要: In this work, ternary CaTiO3/reduced graphene oxide (rGO)/NiFe2O4 nanocomposite was successfully prepared using polyacrylamide gel route followed by hydrothermal method. It is observed that NiFe2O4 and CaTiO3 nanoparticles are assembled on the surface of rGO. Furthermore, the formation of chemical bonding between the nanoparticles and rGO is confirmed. The photocatalytic activities of the samples were evaluated through the degradation of methylene blue and rhodamine B under the simulated sunlight irradiation. The results indicate that the ternary nanocomposite exhibits remarkable enhanced photocatalytic activity compared with bare CaTiO3 and NiFe2O4. In this nanocomposite, the photogenerated electrons of CaTiO3 and NiFe2O4 can be captured by rGO, leading to an increased separation and availability of electrons and holes for the photocatalytic reaction. Moreover, this nanocomposite exhibits obvious ferromagnetism and can be readily recovered by external magnetic field. The recycling photocatalytic experiment demonstrates that the nanocomposite possesses good photocatalytic reusability.
关键词: Nanocomposite,CaTiO3,Graphene,NiFe2O4,Photocatalysis
更新于2025-11-19 16:46:39
-
Laser-induced synthesis and photocatalytic properties of hybrid organic–inorganic composite layers
摘要: A laser-based method was developed for the synthesis and simultaneous deposition of multicomponent hybrid thin layers consisting of nanoentities, graphene oxide (GO) platelets, transition metal oxide nanoparticles, urea, and graphitic carbon nitride (g-C3N4) for environmental applications. The photocatalytic properties of the layers were tested through the degradation of methyl orange organic dye probing molecule. It was further demonstrated that the synthesized hybrid compounds are suitable for the photodegradation of chloramphenicol, a widely used broad-spectrum antibiotic, active against Gram-positive and Gram-negative bacteria. However, released in aquatic media represents a serious environmental hazard, especially owing to the formation of antibiotic-resistant bacteria. The obtained results revealed that organic, urea molecules can become an alternative to noble metals co-catalysts, promoting the separation and transfer of photoinduced charge carriers in catalytic composite systems. Laser radiation induces the reduction of GO platelets and the formation of graphene-like material. During the same synthesis process, g-C3N4 was produced, by laser pyrolysis of urea molecules, without any additional heat treatment. The layers exhibit high photocatalytic activity, being a promising material for photodegradation of organic pollutants in wastewater.
关键词: transition metal oxide nanoparticles,urea,photocatalytic properties,hybrid organic–inorganic composite layers,graphene oxide,graphitic carbon nitride,methyl orange,laser-based synthesis,chloramphenicol
更新于2025-11-14 17:04:02
-
Conductive electrodes based on Ni–graphite core–shell nanoparticles for heterojunction solar cells
摘要: Ni–graphite core–shell nanoparticles (CSNPs), which consisted of Ni nanoparticles (NPs) wrapped with several graphene layers, were grown by the thermal reduction of NiO NPs using H2. The effect of the synthesis temperature (800, 900, 1000, and 1100 °C) on the formation of multilayer graphene shells on the Ni core NPs was investigated to evaluate the structural and electrical characteristics of the particles. The proposed chemical reactions for the formation of Ni NPs can be summarized as follows: formation of liquid Ni by the reduction of NiO, thermal decomposition of the NiO phase, and formation of multilayer graphene shell because of the supersaturation of C in the liquid Ni phase. The resistivity of the electrode pattern fabricated with the Ni–graphite CSNP paste was found to be 6.75 × 10?3 ?·cm. Further, the power conversion efficiency of bulk heterojunction solar cells fabricated with the Ni–graphite CSNPs is higher than that of cells fabricated without the Ni- graphite CSNPs. Thus, our Ni–graphite CSNPs can be employed as a highly efficient electrode material in bulk heterojunction solar cells.
关键词: Thermal reduction,Core–shell structure,Nickel oxide nanoparticle,Graphite,Graphene
更新于2025-11-14 17:04:02
-
Dy(III)-induced aggregation emission quenching effect of single-layered graphene quantum dots for selective detection of phosphate in the artificial wetlands
摘要: Carbon quantum dots (CQDs), prepared by one-step hydrothermal treatment of perylene-3,4,9,10-tetra-carboxylic dianhydride (PTCDA) and triethylamine (TEA), could be exfoliated or delaminated into single-layered graphene quantum dots (s-GQDs) with methanol for the first time, with fluorescence (FL) emission at 500 nm when excited at 417 nm. The s-GQDs, with more sufficient carboxyl groups on the surface than CQDs, could be induced to be aggregated by metal ion dysprosium (Dy3+), resulting in aggregation-induced emission quenching effect subsequently. However, the presence of phosphate (PO4 3-) destroys the Dy3+-induced aggregates of s-GQDs owing to the strong coordination between Dy3+ and PO4 3-, inducing the FL emission recovery of the s-GQDs and providing selective detection method of PO4 3- in the artificial wetlands with the linear range of 0.2–30 μM and determination limit of 0.1 μM (3σ).
关键词: s-GQDs-Dy3+ system,Phosphate detection,Single-layered graphene quantum dots,Carbon quantum dots
更新于2025-11-14 17:04:02
-
Determination of Thiourea by On–Off Fluorescence Using Nitrogen-Doped Graphene Quantum Dots
摘要: A thiourea-detecting fluorescence sensor with Hg2t as a switch was developed using nitrogen-doped graphene quantum dots (N-GQDs). The surface of N-GQDs had many organic functional groups on which Hg2t was effectively bound and turned off the fluorescence of the N-GQDs. The fluorescence of N-GQDs was turned on by the thiol functional group of thiourea that bound strongly with Hg2t and formed Hg2t/thiourea complexes. After constructing the sensor, the experimental conditions and parameters, such as the pH and Hg2t concentration, were investigated and optimized. Under the optimum conditions, the constructed fluorescence sensor showed high sensitivity to thiourea at concentrations from 0.5 to 14 mM with a low detection limit of 41.7 nM. The sensor also exhibited high specificity, excellent stability, and good reproducibility so that the determination of thiourea in various samples had acceptable values with good recoveries from 99% to 106%. The relative standard deviation was less than 4.1% (n ? 3).
关键词: thiourea,Fluorescence,nitrogen-doped graphene quantum dots (N-GQDs),Hg2t,sensor
更新于2025-11-14 17:04:02
-
Grafting cobalt sulfide on graphene nanosheets as a counterelectrode for dye-sensitized solar cells
摘要: In the present work a composite counter electrode of graphene nanosheets grafted cobalt sulfide was fabricated through a facile synthetic route, in which cobalt sulfide nanoparticles were successfully grafted on the surface of graphene nanosheets. Used as a counter electrode in DSSC, a power conversion efficiency of 7.28% can be achieved. Such a result might be contributed to the facts that this counter electrode composed of graphene nanosheets grafted cobalt sulfide has a good stability and electrochemical catalytic performance toward triiodide reduction reaction.
关键词: photovoltaic performance,graphene nanosheets,cobalt sulfide,counterelectrode,Dye-sensitized solar cell
更新于2025-11-14 17:04:02
-
The Preparation and Characterization of Fluorinated Graphene Oxide with Different Degrees of Oxidation
摘要: For many excellent graphene derivatives, tailoring the material properties is crucial to get a broader application. In the present work, a series of fluorinated graphene oxide (FGO) with various oxidation degree were synthesized using a modified Hummers method at different reaction temperatures. The structure and property of FGO were analyzed by X-ray diffraction (XRD), Fourier transform infra-red spectra (FT-IR), X-ray photoelectron spectra (XPS) and Zeta potential analysis. The results indicate that the oxygen contents range from 5.61 % to 21.96 % in FGO can be tuned by altering the reaction temperatures. The oxygen in FGO is presented mainly in the form of epoxide and carboxyl groups. With increasing reaction temperature from 50 °C to 90 °C, the oxygen content in FGO decreases and thicker multilayered FGO is formed with lower dispersibility.
关键词: Controllable oxidation,Fluorinated Graphene Oxide,Low temperature reaction
更新于2025-11-14 17:04:02
-
NiS2@MoS2 Nanospheres Anchored on Reduced Graphene Oxide: A Novel Ternary Heterostructure with Enhanced Electromagnetic Absorption Property
摘要: For the purposes of strength, military equipment camou?age, and protecting the health of organisms, electromagnetic wave absorbing materials have received a lot of attention and are widely studied. In addition to having a strong absorption intensity and a wide effective absorption bandwidth, materials that are lightweight, thermally stable, and antioxidative are also highly desirable. In this study, we fabricated core–shell structured NiS2@MoS2 nanospheres anchored on reduced graphene oxide (rGO) nanosheets (NiS2@MoS2/rGO) by a simple two-step hydrothermal method. The combination ratio was adjusted to achieve proper impedance matching. The electromagnetic parameters and the absorption performance were investigated in detail. A composite loaded with 30 wt.% of the sample achieved a minimum re?ection loss (RL) value of ?29.75 dB and the effective bandwidth (RL value of less than ?10 dB) ranged from 4.95 GHz to 18.00 GHz (13.05 GHz), with a thickness ranging from 1.5 mm to 4.0 mm. This study proved that the generated signi?cant interfacial polarization and synergetic interaction between components can result in NiS2@MoS2/rGO composites with enhanced electromagnetic absorption performance.
关键词: heterostructure,electromagnetic absorption,graphene,core–shell
更新于2025-11-14 17:03:37