- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Flexible Organic Solar Cells Over 15% Efficiency with Polyimide-Integrated Graphene Electrodes
摘要: A highly flexible and durable transparent graphene electrode with thermal stability was developed via the direct integration of polyimide (PI) on graphene. Due to the high transparency of PI-integrated graphene electrode and intimate contact between graphene and PI substrate, high-efficiency flexible organic solar cell with a PCE of 15.2% and outstanding mechanical robustness was obtained.
关键词: Thermal Stability,High Efficiency,Polyimide-Integrated Graphene Electrodes,Flexible Organic Solar Cells,Mechanical Robustness
更新于2025-09-23 15:21:01
-
Impact of Plasmonic Photothermal Effects on the Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning Electrochemical Microscopy
摘要: Atomically-thin graphene electrodes enable the modulation of interfacial reactivity by means of underlying substrate effects. Here we show that plasmonic excitation of microscopic arrays composed of 50 nm Au nanoparticles situated underneath a graphene interface results in localized enhancements on the electrochemical readout. We used scanning electrochemical microscopy (SECM) in the feedback and H2O2 collection modes to identify the role of the generated plasmons on the electrochemical response. Using electrochemical imaging, supported by finite-element method simulations, we confirmed that a temperature rise of up to ~30 K was responsible for current enhancements observed for mass transfer-limited reactions. On single-layer graphene (SLG) we observed a shift in the onset of H2O2 generation which we traced back to photothermal induced kinetic changes, raising ko’ from 1.1 x 10-8 m/s to 2.2 x 10-7 m/s. Thicker 10-layer graphene electrodes displayed only a small kinetic difference with respect to SLG, suggesting that photothermal processes, in contrast to hot carriers, are the main contributor to the observed changes in interfacial reactivity upon illumination. SECM is demonstrated to be a powerful technique for elucidating thermal contributions to reactive enhancements, and presents a convenient platform for studying temperature-dependent phenomena over individual sites on electrodes.
关键词: scanning electrochemical microscopy,graphene electrodes,plasmonic photothermal effects,Au nanoparticle,electrochemical reactivity
更新于2025-09-19 17:13:59