修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting - Atlanta, GA, USA (2019.7.7-2019.7.12)] 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting - Propagation Characteristics of a Reconfigurable Plasmonic Rectangular Groove Grating Waveguide Using Periodically Photoinduced Plasma

    摘要: Hidden Markov models (HMMs) have previously been successfully applied to subsurface threat detection using ground penetrating radar (GPR) data. However, parameter estimation in most HMM-based landmine detection approaches is difficult since object locations are typically well known for the 2-D coordinates on the Earth's surface but are not well known for object depths underneath the ground/time of arrival in a GPR A-scan. As a result, in a standard expectation maximization HMM (EM-HMM), all depths corresponding to a particular alarm location may be labeled as target sequences although the characteristics of data from different depths are substantially different. In this paper, an alternate HMM approach is developed using a multiple-instance learning (MIL) framework that considers an unordered set of HMM sequences at a particular alarm location, where the set of sequences is defined as positive if at least one of the sequences is a target sequence; otherwise, the set is defined as negative. Using the MIL framework, a collection of these sets (bags), along with their labels is used to train the target and nontarget HMMs simultaneously. The model parameters are inferred using variational Bayes, making the model tractable and computationally efficient. Experimental results on two synthetic and two landmine data sets show that the proposed approach performs better than a standard EM-HMM.

    关键词: variational Bayes (VB),hidden landmine detection,Ground penetrating radar (GPR),multiple-instance learning (MIL)

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Beijing, China (2019.11.21-2019.11.23)] 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Demand Response Quantification Strategy for High Photovoltaic Penetration Systems with Thermal Ramp Rate Limitation

    摘要: Hidden Markov models (HMMs) have previously been successfully applied to subsurface threat detection using ground penetrating radar (GPR) data. However, parameter estimation in most HMM-based landmine detection approaches is difficult since object locations are typically well known for the 2-D coordinates on the Earth’s surface but are not well known for object depths underneath the ground/time of arrival in a GPR A-scan. As a result, in a standard expectation maximization HMM (EM-HMM), all depths corresponding to a particular alarm location may be labeled as target sequences although the characteristics of data from different depths are substantially different. In this paper, an alternate HMM approach is developed using a multiple-instance learning (MIL) framework that considers an unordered set of HMM sequences at a particular alarm location, where the set of sequences is defined as positive if at least one of the sequences is a target sequence; otherwise, the set is defined as negative. Using the MIL framework, a collection of these sets (bags), along with their labels is used to train the target and nontarget HMMs simultaneously. The model parameters are inferred using variational Bayes, making the model tractable and computationally efficient. Experimental results on two synthetic and two landmine data sets show that the proposed approach performs better than a standard EM-HMM.

    关键词: variational Bayes (VB),hidden landmine detection,Ground penetrating radar (GPR),multiple-instance learning (MIL)

    更新于2025-09-19 17:13:59

  • [IEEE 2019 International Energy and Sustainability Conference (IESC) - Farmingdale, NY, USA (2019.10.17-2019.10.18)] 2019 International Energy and Sustainability Conference (IESC) - Influence of Photovoltaic Installations on Employability and Education in Senegal

    摘要: Hidden Markov models (HMMs) have previously been successfully applied to subsurface threat detection using ground penetrating radar (GPR) data. However, parameter estimation in most HMM-based landmine detection approaches is difficult since object locations are typically well known for the 2-D coordinates on the Earth’s surface but are not well known for object depths underneath the ground/time of arrival in a GPR A-scan. As a result, in a standard expectation maximization HMM (EM-HMM), all depths corresponding to a particular alarm location may be labeled as target sequences although the characteristics of data from different depths are substantially different. In this paper, an alternate HMM approach is developed using a multiple-instance learning (MIL) framework that considers an unordered set of HMM sequences at a particular alarm location, where the set of sequences is defined as positive if at least one of the sequences is a target sequence; otherwise, the set is defined as negative. Using the MIL framework, a collection of these sets (bags), along with their labels is used to train the target and nontarget HMMs simultaneously. The model parameters are inferred using variational Bayes, making the model tractable and computationally efficient. Experimental results on two synthetic and two landmine data sets show that the proposed approach performs better than a standard EM-HMM.

    关键词: variational Bayes (VB),hidden landmine detection,Ground penetrating radar (GPR),multiple-instance learning (MIL)

    更新于2025-09-19 17:13:59

  • A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect

    摘要: Hidden Markov models (HMMs) have previously been successfully applied to subsurface threat detection using ground penetrating radar (GPR) data. However, parameter estimation in most HMM-based landmine detection approaches is difficult since object locations are typically well known for the 2-D coordinates on the Earth’s surface but are not well known for object depths underneath the ground/time of arrival in a GPR A-scan. As a result, in a standard expectation maximization HMM (EM-HMM), all depths corresponding to a particular alarm location may be labeled as target sequences although the characteristics of data from different depths are substantially different. In this paper, an alternate HMM approach is developed using a multiple-instance learning (MIL) framework that considers an unordered set of HMM sequences at a particular alarm location, where the set of sequences is defined as positive if at least one of the sequences is a target sequence; otherwise, the set is defined as negative. Using the MIL framework, a collection of these sets (bags), along with their labels is used to train the target and nontarget HMMs simultaneously. The model parameters are inferred using variational Bayes, making the model tractable and computationally efficient. Experimental results on two synthetic and two landmine data sets show that the proposed approach performs better than a standard EM-HMM.

    关键词: multiple-instance learning (MIL),variational Bayes (VB),Ground penetrating radar (GPR),hidden landmine detection

    更新于2025-09-19 17:13:59