- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion
摘要: The design of new alloys by and for metal additive manufacturing (AM) is an emerging field of research. Currently, pre-alloyed powders are used in metal AM, which are expensive and inflexible in terms of varying chemical composition. The present study describes the adaption of rapid alloy development in laser powder bed fusion (LPBF) by using elemental powder blends. This enables an agile and resource-efficient approach to designing and screening new alloys through fast generation of alloys with varying chemical compositions. This method was evaluated on the new and chemically complex materials group of multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs). MPEAs constitute ideal candidates for the introduced methodology due to the large space for possible alloys. First, process parameters for LPBF with powder blends containing at least five different elemental powders were developed. Secondly, the influence of processing parameters and the resulting energy density input on the homogeneity of the manufactured parts were investigated. Microstructural characterization was carried out by optical microscopy, electron backscatter diffraction (EBSD), and energy-dispersive X-ray spectroscopy (EDS), while mechanical properties were evaluated using tensile testing. Finally, the applicability of powder blends in LPBF was demonstrated through the manufacture of geometrically complex lattice structures with energy absorption functionality.
关键词: multi-principal element alloys,high-entropy alloys,additive manufacturing,rapid alloy development,powder blends,laser powder bed fusion
更新于2025-11-21 11:01:37
-
Laser processing as a high-throughput method to investigate microstructure-processing-property relationships in multiprincipal element alloys
摘要: A direct laser deposition processing method was applied to construct compositional and microstructural libraries of AlxCoCrFeNi in an efficient and high-throughput manner. Among the compositions (x ? 0.51 e1.25) and quench rates (26e6400 K/s) studied, most of the laser deposited alloys exhibit a cellular microstructure, similar to the cast materials. The microstructural feature sizes were found to follow a power law relationship with the quench rate. The dependence of the microhardness on microstructural length scale was also investigated and observed to follow a Hall-Petch relationship. This study indicates that laser processing is an effective method for rapidly and efficiently evaluating multiprincipal element alloys and their microstructures.
关键词: Direct laser deposition,High-entropy alloys,Mechanical property,Microstructure
更新于2025-09-19 17:13:59
-
Laser Beam Welding of a Low Density Refractory High Entropy Alloy
摘要: The effect of laser beam welding on the structure and properties of a Ti1.89NbCrV0.56 refractory high entropy alloy was studied. In particular, the effect of different pre-heating temperatures was examined. Due to the low ductility of the material, laser beam welding at room temperature resulted in the formations of hot cracks. Sound butt joints without cracks were produced using pre-heating to T ≥ 600 °C. In the initial as-cast condition, the alloy consisted of coarse bcc grains with a small amount of lens-shaped C15 Laves phase particles. A columnar microstructure was formed in the welds; the thickness of the grains increased with the temperature of pre-heating before welding. The Laves phase particles were formed in the seams after welding at 600 °C or 800 °C, however, these particles were not observed after welding at room temperature or at 400 °C. Soaking at elevated temperatures did not change the microstructure of the base material considerably, however, “additional” small Laves particles formed at 600 °C. Tensile test of welded specimens performed at 750 °C resulted in the fracture of the base material because of the higher hardness of the welds. The latter can be associated with the bcc grains refinement in the seams.
关键词: microstructure,mechanical properties,laser beam welding,high entropy alloys
更新于2025-09-12 10:27:22