- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Energy Management and Coordinated Control Strategy of PV/HESS AC Microgrid during Islanded Operation
摘要: An energy management control strategy is proposed for an islanded AC microgrid with the hybrid energy storage system (HESS) including the battery and the supercapacitor (SC). According to the state of charge(SOC) of the battery, the photovoltaic (PV) system can work in either maximum power point tracking (MPPT) mode or load power tracking (LPT) mode to prevent the battery from over charging. Similarly, the load shedding control (LSC) is adopted to prevent the battery from over discharging. A virtual impedance control strategy is proposed to achieve effective power sharing in hybrid energy storage systems, where battery provides steady state power and SC only supports transient power fluctuations. The terminal voltage of SC can be restored to the initial value automatically by introducing a high pass filter in the voltage control loop. The AC bus voltage maintains constant using the voltage secondary controller to compensate the voltage droop caused by the virtual impedance control strategy. Simulation results under typical working conditions verify the correctness and effectiveness of the proposed control strategy.
关键词: hybrid energy storage system (HESS),energy management,state of charge (SOC),Coordinated control,voltage restoration,islanded operation,virtual impedance
更新于2025-09-23 15:23:52
-
[IEEE 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) - Chongqing, China (2019.10.11-2019.10.13)] 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) - Capacity Configuration Method of Hybrid Energy Storage System for Stand-Alone Photovoltaic Generation System
摘要: To enhance photovoltaic (PV) utilization of stand-alone PV generation system, a hybrid energy storage system (HESS) capacity configuration method with unit energy storage capacity cost (UC)and capacity redundancy ratio (CRR) as the evaluation indexes is proposed, which is considering different types of load. First, the HESS power difference between the load demand power and the PV output power is obtained by the method, which is allocated by the low-pass filtering algorithm. According to the characteristics of power type and energy type energy storage device, the low frequency component is borne by the energy-type energy storage device, and the high-frequency component is borne by the power-type energy storage device, taking HESS charging and discharging efficiency,SOC upper and lower limits and capacity attenuation as the constraints. Then, based on the whole life cycle cost, analyzing the different effects of different PV power generation energy and load types on the indexes. Finally, the feasibility and effectiveness of this method are analyzed by 3 actual examples.
关键词: capacity configuration,hybrid energy storage system (HESS),Stand-Alone photovoltaic (PV) System,whole-life-cycle cost
更新于2025-09-19 17:13:59