- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Phase Sensitive Amplification in a Periodically Poled Silica Fiber
摘要: This paper describes the design, development and testing of an AR system that was developed for aerospace and ground vehicles to meet stringent accuracy and robustness requirements. The system uses an optical see-through HMD, and thus requires extremely low latency, high tracking accuracy and precision alignment and calibration of all subsystems in order to avoid mis-registration and “swim”. The paper focuses on the optical/inertial hybrid tracking system and describes novel solutions to the challenges with the optics, algorithms, synchronization, and alignment with the vehicle and HMD systems. Tracker accuracy is presented with simulation results to predict the registration accuracy. A car test is used to create a through-the-eyepiece video demonstrating well-registered augmentations of the road and nearby structures while driving. Finally, a detailed covariance analysis of AR registration error is derived.
关键词: Inertial,hybrid tracking,see through HMD,sensor fusion,calibration,registration,augmented reality,image processing
更新于2025-09-19 17:13:59
-
[IEEE 2019 International Conference on Signal Processing and Communication (ICSC) - NOIDA, India (2019.3.7-2019.3.9)] 2019 International Conference on Signal Processing and Communication (ICSC) - Restoration of the Network for Next Generation (5G) Optical Communication Network
摘要: This paper describes the design, development and testing of an AR system that was developed for aerospace and ground vehicles to meet stringent accuracy and robustness requirements. The system uses an optical see-through HMD, and thus requires extremely low latency, high tracking accuracy and precision alignment and calibration of all subsystems in order to avoid mis-registration and “swim”. The paper focuses on the optical/inertial hybrid tracking system and describes novel solutions to the challenges with the optics, algorithms, synchronization, and alignment with the vehicle and HMD systems. Tracker accuracy is presented with simulation results to predict the registration accuracy. A car test is used to create a through-the-eyepiece video demonstrating well-registered augmentations of the road and nearby structures while driving. Finally, a detailed covariance analysis of AR registration error is derived.
关键词: see through HMD,hybrid tracking,augmented reality,image processing,calibration,registration,Inertial,sensor fusion
更新于2025-09-19 17:13:59
-
AIP Conference Proceedings [AIP Publishing LLC 11TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS: CPV-11 - Aix-les-Bains, France (13–15 April 2015)] - MISPS solar position sensor development and field tests
摘要: A solar position sensor integrated within concentrated photovoltaics (CPV) module enclosure has been developed and manufactured using several different techniques and substrates. The sensor is made from standard monocrystalline Si cells which have been laser cut in eight pieces divided in two sectors, providing very large acceptance and high accuracy to an hybrid tracking system, simplifying CPV systems commissioning activities.
关键词: monocrystalline Si cells,hybrid tracking system,concentrated photovoltaics,solar position sensor
更新于2025-09-12 10:27:22