- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Properties, fabrication and applications of plasmonic semiconductor nanocrystals
摘要: In semiconductor nanocrystals (NCs), a new regime has been opened in the plasmonic field since the discovery of localized surface plasmon resonances (LSPRs). LSPRs that lead to near-field enhancement, scattering, and resonant absorption around the NC can be tuned in the range from the visible to the near-infrared (NIR) region across a wide optical spectrum by synthetically varying the doping level, and post synthetically via electrochemical control, photochemical control, and chemical oxidation and reduction. In this review, we will focus on the three widely explored and interrelated examples and their manipulation methods of LSPR of (1) hydrogen molybdenum bronze (HxMoO3?y) NCs, (2) hydrogen tungsten bronze (HxWO3?y) NCs, and (3) oxygen vacancy doped molybdenum tungsten oxide (MoxW1?xO3?y) NCs. Finally, a brief outlook on the applications of these plasmonic NCs is presented.
关键词: hydrogen molybdenum bronze,localized surface plasmon resonances,hydrogen tungsten bronze,plasmonic semiconductor nanocrystals,molybdenum tungsten oxide
更新于2025-09-23 15:19:57
-
Flexible Alla??Solutiona??Processed Organic Solar Cells with Higha??Performance Nonfullerene Active Layers
摘要: All-solution-processed organic solar cells (from the bottom substrate to the top electrode) are highly desirable for low-cost and ubiquitous applications. However, it is still challenging to fabricate efficient all-solution-processed organic solar cells with a high-performance nonfullerene (NF) active layer. Issues of charge extraction and wetting are persistent at the interface between the nonfullerene active layer and the printable top electrode (PEDOT:PSS). In this work, efficient all-solution-processed NF organic solar cells (from the bottom substrate to the top electrode) are reported via the adoption of a layer of hydrogen molybdenum bronze (HXMoO3) between the active layer and the PEDOT:PSS. The dual functions of HXMoO3 include: 1) its deep Fermi level of ?5.44 eV can effectively extract holes from the active layer; and 2) the wetting issues of the PEDOT:PSS on the hydrophobic surface of the NF active layer can be solved. Importantly, fine control of the HXMoO3 composition during the synthesis is critical in obtaining processing orthogonality between HXMoO3 and the PEDOT:PSS. Flexible all-solution-processed NF organic solar cells with power conversion efficiencies of 11.9% and 10.3% are obtained for solar cells with an area of 0.04 and 1 cm2, respectively.
关键词: nonfullerene organic solar cells,all-solution-processed,hydrogen molybdenum bronze,charge extraction,wetting
更新于2025-09-23 15:19:57