修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

31 条数据
?? 中文(中国)
  • [IEEE 2018 3rd International Conference on Computer Science and Engineering (UBMK) - Sarajevo, Bosnia and Herzegovina (2018.9.20-2018.9.23)] 2018 3rd International Conference on Computer Science and Engineering (UBMK) - Hyperspectral Image Classification Using Reduced Extreme Learning Machine

    摘要: In the classification of hyperspectral images, kernel based approaches have been shown to be successful results. Too much training or testing data in the images increases the computation time and memory requirements in the kernel computations. Extreme learning machines that can be used with the kernel approach also need the same requirements in kernel computations. In this study, improvements were made in terms of computation time and memory using reduced kernel extreme learning machines (RKELM). The obtained results are presented comparatively through the tables of performance and time information with kernel extreme learning machine (KELM).

    关键词: classification,spectral information,Hyperspectral images,reduced kernel extreme learning machine

    更新于2025-09-23 15:23:52

  • A review on graph-based semi-supervised learning methods for hyperspectral image classification

    摘要: In this article, a comprehensive review of the state-of-art graph-based learning methods for classification of the hyperspectral images (HSI) is provided, including a spectral information based graph semi-supervised classification and a spectral-spatial information based graph semi-supervised classification. In addition, related techniques are categorized into the following sub-types: (1) Manifold representation based Graph Semi-supervised Learning for HSI Classification (2) Sparse representation based Graph Semi-supervised Learning for HSI Classification. For each technique, methodologies, training and testing samples, various technical difficulties, as well as performances, are discussed. Additionally, future research challenges imposed by the graph-based model are indicated.

    关键词: Image classification,Hyperspectral images,Semi-supervised learning,Graph-based learning

    更新于2025-09-23 15:23:52

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Adaptive Hyperspectral Mixed Noise Removal

    摘要: This paper proposes a new denoising method for hyperspectral images (HSIs) corrupted by mixtures (in a statistical sense) of stripe noise, Gaussian noise, and impulsive noise. The proposed method has three distinctive features: 1) it exploits the intrinsic characteristics of HSIs, namely, low-rank and self-similarity; 2) the observation noise is assumed to be additive and modeled by a mixture of Gaussian (MoG) densities; 3) the inference is performed with an expectation maximization (EM) algorithm, which, in addition to the clean HSI, also estimates the mixture parameters (posterior probability of each mode and variances). Comparisons of the proposed method with state-of-the-art algorithms provide experimental evidence of the effectiveness of the proposed denoising algorithm.

    关键词: expectation maximization,low-rank,mixed noise,self-similarity,Denoising,mixture of Gaussians,hyperspectral images

    更新于2025-09-23 15:22:29

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Blind Nonlinear Hyperspectral Unmixing Using an <tex>$\ell_{q}$</tex> Regularizer

    摘要: Hyperspectral unmixing consists of estimating pure material spectra (endmembers) and their corresponding abundances in hyperspectral images. In this paper, a blind nonlinear hyperspectral unmixing algorithm is presented. The algorithm promotes sparse abundance maps using an lq regularizer and assumes that the spectra are mixed according to an extension to generalized bilinear model, called the Fan model. The algorithm is evaluated using both simulated and real hyperspectral data.

    关键词: non-negative matrix factorization,Spectral unmixing,bilinear model,hyperspectral images

    更新于2025-09-23 15:22:29

  • Hyperspectral Face Recognition with Patch-Based Low Rank Tensor Decomposition and PFFT Algorithm

    摘要: Hyperspectral imaging technology with sufficiently discriminative spectral and spatial information brings new opportunities for robust facial image recognition. However, hyperspectral imaging poses several challenges including a low signal-to-noise ratio (SNR), intra-person misalignment of wavelength bands, and a high data dimensionality. Many studies have proven that both global and local facial features play an important role in face recognition. This research proposed a novel local features extraction algorithm for hyperspectral facial images using local patch based low-rank tensor decomposition that also preserves the neighborhood relationship and spectral dimension information. Additionally, global contour features were extracted using the polar discrete fast Fourier transform (PFFT) algorithm, which addresses many challenges relevant to human face recognition such as illumination, expression, asymmetrical (orientation), and aging changes. Furthermore, an ensemble classifier was developed by combining the obtained local and global features. The proposed method was evaluated by using the Poly-U Database and was compared with other existing hyperspectral face recognition algorithms. The illustrative numerical results demonstrate that the proposed algorithm is competitive with the best CRC_RLS and PLS methods.

    关键词: spectral and spatial information,polar discrete fast Fourier transform,band fusion,ensemble classifier,global and local features,tensor decomposition,hyperspectral images

    更新于2025-09-23 15:22:29

  • Spectral–spatial classification of hyperspectral images by algebraic multigrid based multiscale information fusion

    摘要: In this work, we present a novel spectral-spatial classification framework of hyperspectral images (HSIs) by integrating the techniques of algebraic multigrid (AMG), hierarchical segmentation (HSEG) and Markov random field (MRF). The proposed framework manifests two main contributions. First, an effective HSI segmentation method is developed by combining the AMG-based marker selection approach and the conventional HSEG algorithm to construct a set of unsupervised segmentation maps in multiple scales. To improve the computational efficiency, the fast Fish Markov selector (FMS) algorithm is exploited for feature selection before image segmentation. Second, an improved MRF energy function is proposed for multiscale information fusion (MIF) by considering both spatial and inter-scale contextual information. Experiments were performed using two airborne HSIs to evaluate the performance of the proposed framework in comparison with several popular classification methods. The experimental results demonstrated that the proposed framework can provide superior performance in terms of both qualitative and quantitative analysis.

    关键词: hierarchical segmentation,algebraic multigrid,hyperspectral images,spectral-spatial classification,multiscale information fusion,Markov random field

    更新于2025-09-23 15:22:29

  • A Novel Regularized Nonnegative Matrix Factorization for Spectral-Spatial Dimension Reduction of Hyperspectral Imagery

    摘要: Dimension reduction (DR) is an essential preprocessing for hyperspectral image (HSI) classification. Recently, nonnegative matrix factorization (NMF) has been shown as an effective tool for the DR of hyperspectral data given the fact that it provides interpretable results. However, the basic NMF ignores the geometric structure information of the HSI data, thus limiting its performance. To this end, a novel regularized NMF method, termed NMF with adaptive graph regularizer (NMFAGR), is proposed for the spectral-spatial dimension reduction of hyperspectral data in this paper. Specifically, to enhance the preservation ability of the geometric structure information, the NMFAGR performs the dimension reduction and graph learning simultaneously. Regarding the mutual correlation between these two tasks, a graph regularizer is added as an interaction. Moreover, to effectively utilize complementary information among spectral-spatial features, the NMFAGR allocates feature weight factors automatically without requiring any additional parameters. An efficient algorithm is utilized to solve the optimization problem. The effectiveness of the proposed method is demonstrated on three benchmark hyperspectral data sets through experimentation.

    关键词: Hyperspectral images,feature extraction,pattern recognition

    更新于2025-09-23 15:22:29

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Enrichment of the Satellitesceneontology with Hyperspectral Images/ Crops and Feature Vectors of Radiometric Indices

    摘要: Semantic classification and annotation of satellite images are of great importance and require knowledge resources. The complexity of satellite scenes makes its classification and annotation hard tasks and we are still far from totally resolving the semantic gap problem. There are several knowledge resources such as semantic networks, taxonomies and ontologies. In this paper, we propose to enrich the Satellite Scene Ontology using real hyperspectral scenes, the USGS spectral library and the WordNet lexical database. The resulting ontology would be published online for further exploitation by researchers.

    关键词: WordNet,Radiometric Indices,Satellite Scene Ontology,Ontology,Hyperspectral Images (HSI),Spectral Signature,USGS Spectral Library

    更新于2025-09-23 15:22:29

  • HCKBoost: Hybridized composite kernel boosting with extreme learning machines for hyperspectral image classification

    摘要: Utilization of contextual information on the hyperspectral image (HSI) analysis is an important fact. On the other hand, multiple kernels (MKs) and hybrid kernels (HKs) in connection with kernel methods have significant impact on the classification process. Activation of spatial information via composite kernels (CKs) and exploiting hidden features of the spectral information via MKs and HKs have been shown great successes on hyperspectral images separately. In this work, it is aimed to aggregate composite and hybrid kernels to obtain high classification success with a boosting based community learner. Spatial and spectral hybrid kernels are constructed using weighted convex combination approach with respect to individual success of the predefined kernels. Composite kernel formation is realized with certain proportions of the obtained spatial and spectral HKs. Computationally fast and effective extreme learning machine (ELM) classification algorithm is adopted. Since, main objective is to obtain optimal kernel during ensemble formation operation, unlike the standard MKL methods, proposed method disposes off the complex optimization processes and allows multi-class classification. Pavia University, Indian Pines, and Salinas hyperspectral scenes that have ground truth information are used for simulations. Hybridized composite kernels (HCK) are constructed using Gaussian, polynomial, and logarithmic kernel functions with various parameters and then obtained results are presented comparatively along with the state-of-the-art MKL, CK, sparse representation, and single kernel based methods.

    关键词: Hyperspectral images,Composite kernels,Adaptive boosting,Extreme learning machines,Hybrid kernels

    更新于2025-09-23 15:22:29

  • A Prediction-Based Spatial-Spectral Adaptive Hyperspectral Compressive Sensing Algorithm

    摘要: In order to improve the performance of storage and transmission of massive hyperspectral data, a prediction-based spatial-spectral adaptive hyperspectral compressive sensing (PSSAHCS) algorithm is proposed. Firstly, the spatial block size of hyperspectral images is adaptively obtained according to the spatial self-correlation coefficient. Secondly, a k-means clustering algorithm is used to group the hyperspectral images. Thirdly, we use a local means and local standard deviations (LMLSD) algorithm to find the optimal image in the group as the key band, and the non-key bands in the group can be smoothed by linear prediction. Fourthly, the random Gaussian measurement matrix is used as the sampling matrix, and the discrete cosine transform (DCT) matrix serves as the sparse basis. Finally, the stagewise orthogonal matching pursuit (StOMP) is used to reconstruct the hyperspectral images. The experimental results show that the proposed PSSAHCS algorithm can achieve better evaluation results—the subjective evaluation, the peak signal-to-noise ratio, and the spatial autocorrelation coefficient in the spatial domain, and spectral curve comparison and correlation between spectra-reconstructed performance in the spectral domain—than those of single spectral compression sensing (SSCS), block hyperspectral compressive sensing (BHCS), and adaptive grouping distributed compressive sensing (AGDCS). PSSAHCS can not only compress and reconstruct hyperspectral images effectively, but also has strong denoise performance.

    关键词: interspectral prediction,compressive sensing,spatial-spectral adaptation,hyperspectral images

    更新于2025-09-23 15:21:21