- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging
摘要: Seed aging during storage is irreversible, and a rapid, accurate detection method for seed vigor detection during seed aging is of great importance for seed companies and farmers. In this study, an artificial accelerated aging treatment was used to simulate the maize kernel aging process, and hyperspectral imaging at the spectral range of 874–1734 nm was applied as a rapid and accurate technique to identify seed vigor under different accelerated aging time regimes. Hyperspectral images of two varieties of maize processed with eight different aging duration times (0, 12, 24, 36, 48, 72, 96 and 120 h) were acquired. Principal component analysis (PCA) was used to conduct a qualitative analysis on maize kernels under different accelerated aging time conditions. Second-order derivatization was applied to select characteristic wavelengths. Classification models (support vector machine?SVM) based on full spectra and optimal wavelengths were built. The results showed that misclassification in unprocessed maize kernels was rare, while some misclassification occurred in maize kernels after the short aging times of 12 and 24 h. On the whole, classification accuracies of maize kernels after relatively short aging times (0, 12 and 24 h) were higher, ranging from 61% to 100%. Maize kernels with longer aging time (36, 48, 72, 96, 120 h) had lower classification accuracies. According to the results of confusion matrixes of SVM models, the eight categories of each maize variety could be divided into three groups: Group 1 (0 h), Group 2 (12 and 24 h) and Group 3 (36, 48, 72, 96, 120 h). Maize kernels from different categories within one group were more likely to be misclassified with each other, and maize kernels within different groups had fewer misclassified samples. Germination test was conducted to verify the classification models, the results showed that the significant differences of maize kernel vigor revealed by standard germination tests generally matched with the classification accuracies of the SVM models. Hyperspectral imaging analysis for two varieties of maize kernels showed similar results, indicating the possibility of using hyperspectral imaging technique combined with chemometric methods to evaluate seed vigor and seed aging degree.
关键词: hyperspectral imaging technology,standard germination tests,support vector machine model,accelerated aging,principal component analysis,maize kernel
更新于2025-09-23 15:22:29
-
Detection of moisture content in peanut kernels using hyperspectral imaging technology coupled with chemometrics
摘要: Hyperspectral imaging technology at 416–1000 nm was investigated to detect moisture content in peanut kernels. Four varieties of peanuts were scanned using a “push-broom” system to acquire hyperspectral images. In this study, three models including partial least squares regression (PLSR), principal component regression (PCR), and support vector machine regression (SVR) were established to detect moisture content in peanut kernels based on full wavelengths. The performance of SVR was the best with determination coefficient (R2) of .9432, root mean square errors (RMSE) of 0.7054%, and residual prediction deviation (RPD) of 3.9694 for prediction set. In order to simplify modeling process and improve calculation speed of the models, successive projections algorithm (SPA) and regression coefficient were applied for optimal wavelengths selection. Then, PCR, PLSR, and SVR models were established based on these selected wavelengths, respectively. As a result, SPA–SVR generated a satisfied effect with R2 of .9363, RMSE of 0.7021%, and RPD of 3.988 for prediction set. All results in this study indicated that the combination of chemometrics and hyperspectral imaging technology could achieve rapid and nondestructive detection of moisture content in peanut kernels.
关键词: moisture content,nondestructive detection,peanut kernels,chemometrics,hyperspectral imaging technology
更新于2025-09-19 17:13:59
-
Identification of Soybean Varieties Using Hyperspectral Imaging Coupled with Convolutional Neural Network
摘要: Soybean variety is connected to stress resistance ability, as well as nutritional and commercial value. Near-infrared hyperspectral imaging was applied to classify three varieties of soybeans (Zhonghuang37, Zhonghuang41, and Zhonghuang55). Pixel-wise spectra were extracted and preprocessed, and average spectra were also obtained. Convolutional neural networks (CNN) using the average spectra and pixel-wise spectra of different numbers of soybeans were built. Pixel-wise CNN models obtained good performance predicting pixel-wise spectra and average spectra. With the increase of soybean numbers, performances were improved, with the classification accuracy of each variety over 90%. Traditionally, the number of samples used for modeling is large. It is time-consuming and requires labor to obtain hyperspectral data from large batches of samples. To explore the possibility of achieving decent identification results with few samples, a majority vote was also applied to the pixel-wise CNN models to identify a single soybean variety. Prediction maps were obtained to present the classification results intuitively. Models using pixel-wise spectra of 60 soybeans showed equivalent performance to those using the average spectra of 810 soybeans, illustrating the possibility of discriminating soybean varieties using few samples by acquiring pixel-wise spectra.
关键词: a majority vote,convolutional neural network,hyperspectral imaging technology,soybean,pixel-wise spectra
更新于2025-09-16 10:30:52