- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Hyperspectral Mixed Denoising via Spectral Difference-Induced Total Variation and Low-Rank Approximation
摘要: Exploration of multiple priors on observed signals has been demonstrated to be one of the effective ways for recovering underlying signals. In this paper, a new spectral difference-induced total variation and low-rank approximation (termed SDTVLA) method is proposed for hyperspectral mixed denoising. Spectral difference transform, which projects data into spectral difference space (SDS), has been proven to be powerful at changing the structures of noises (especially for sparse noise with a specific pattern, e.g., stripes or dead lines present at the same position in a series of bands) in an original hyperspectral image (HSI), thus allowing low-rank techniques to get rid of mixed noises more efficiently without treating them as low-rank features. In addition, because the neighboring pixels are highly correlated and the spectra of homogeneous objects in a hyperspectral scene are always in the same low-dimensional manifold, we are inspired to combine total variation and the nuclear norm to simultaneously exploit the local piecewise smoothness and global low rankness in SDS for mixed noise reduction of HSI. Finally, the alternating direction methods of multipliers (ADMM) is employed to effectively solve the SDTVLA model. Extensive experiments on three simulated and two real HSI datasets demonstrate that, in terms of quantitative metrics (i.e., the mean peak signal-to-noise ratio (MPSNR), the mean structural similarity index (MSSIM) and the mean spectral angle (MSA)), the proposed SDTVLA method is, on average, 1.5 dB higher MPSNR values than the competitive methods as well as performing better in terms of visual effect.
关键词: ADMM,total variation,hyperspectral mixed denoising,low-rank approximation,spectral difference space
更新于2025-09-23 15:23:52
-
[IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Hyperspectral Mixed Denoising Via Subspace Low Rank Learning and BM4D Filtering
摘要: This paper proposes a novel mixed noise removal method via subspace low rank representation and BM4D filtering for hyperspectral imagery (HSI). The proposed method is based on the following two facts. The first one is that the spectra in each class of HSI lie in different low-rank subspace, that is, the HSI data could be decomposed into two sub-matrices with lower ranks in the framework of subspace low rank representation. The second one is that the spatial structures of HSI have the property of non-local self-similarity (NSS), and the NSS could be effectively exploited by BM4D filter with no additional parameters. The proposed model can be easily and effectively solved by splitting it into several sub-problems via the alternating direction method of multipliers (ADMM). Experimental results validate that the proposed method outperforms other state-of-the-art denoising methods for HSI.
关键词: BM4D,subspace low rank representation,iterative learning,Hyperspectral mixed denoising,ADMM
更新于2025-09-09 09:28:46