- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Analysis of optical injection on red and blue laser diodes for high bit-rate visible light communication
摘要: In this work, self-injection and external-injection in ~450 nm InGaN/GaN blue and ~650 nm InGaP/AlGaInP red diode lasers are investigated. A distinct locking characteristic is observed in the self-injection case with small 19 cm cavity length, demonstrating enhanced ~2.34 and ~2.07 GHz 3-dB bandwidths, corresponding to a factor of ~1.4 and ~1.1 improvement, and reduced ~60 and ~80 pm spectral linewidths, for the blue and the red lasers, respectively. Moreover, this short external cavity self-injection locked system exhibited superior performance by a factor of 1.1–1.3 compared to the long cavity (26 cm) configuration. Conversely, the external optical injection exhibited weak locking signature with improved linewidths by a factor of ~1.6–2.8 and reaching as small as ~70 and ~87 pm for the blue laser, respectively, while almost doubling in the peak powers. Later, on–off keying modulation technique based data transmission rates of up to 3.5 and 4.5 Gb/s are demonstrated on free-running blue and red laser diodes, respectively, employing an in-house laser diode mount based system. Moreover, owing to the bandwidth limitation of the optically injected systems, successful transmission of up to 2 Gb/s is demonstrated with better performance compared to the respective free-running cases, in particular, the external-optically injected system demonstrated more than double improvement in the bit-error-rate.
关键词: Visible light communication,Semiconductor laser diodes,External optical injection,Self-injection locking
更新于2025-11-28 14:23:57
-
Stable injection locking with slotted Fabry–Perot lasers at 2 <i>μ</i> m
摘要: Injection locking has many applications in telecommunications systems, such as narrowing linewidths, increasing bandwidth and improving filtering. Beyond telecommunications, injection locking is widely used in remote sensing. This is of particular interest for applications in the 2 μm region, where gases such as carbon dioxide, water vapour and methane have identifiable absorption features. In this paper, we demonstrate stable injection locking with slotted Fabry–Perot lasers in the 2 μm wavelength region. Injection locking was observed in both the optical domain and power spectrum; with key features recorded such as injection ‘pulling’, side-mode suppression and the characteristic quiet region in the electrical domain denoting single-frequency emission and stable locking. The effect of varying the injection ratio was investigated, with a decreased injection ratio corresponding to a reduction in the locking bandwidth. Finally, the lasers were shown to remain injection locked, with no thermal drift, for over 24 h, indicating their suitability for implementation in a real-world telecommunications system.
关键词: injection-locked lasers,semiconductor lasers,optical communications,optical sensing and sensors
更新于2025-11-28 14:23:57
-
Femtosecond Spectroscopy of Au Hot-Electron Injection into TiO2: Evidence for Au/TiO2 Plasmon Photocatalysis by Bactericidal Au Ions and Related Phenomena
摘要: In the present work, we provide evidence for visible light irradiation of the Au/TiO2 nanoparticles’ surface plasmon resonance band (SPR) leading to electron injection from the Au nanoparticles to the conduction band of TiO2. The Au/TiO2 SPR band is shown to greatly enhance the light absorption of TiO2 in the visible region. Evidence is presented for the light absorption by the Au/TiO2 plasmon bands leading to the dissolution of Au nanoparticles. This dissolution occurs concomitantly with the injection of the hot electrons generated by the Au plasmon into the conduction band of TiO2. The electron injection from the Au nanoparticles into TiO2 was followed by femtosecond spectroscopy. The formation of Au ions was further confirmed by the spectral shift of the transient absorption spectra of Au/TiO2. The spectral changes of the SPR band of Au/TiO2 nanoparticles induced by visible light were detected by spectrophotometer, and the morphological transformation of Au/TiO2 was revealed by electron microscopy techniques as well. Subsequently, the fate of the Au ions was sorted out during the growth and biofilm formation for some selected Gram-negative bacteria. This study compares the bactericidal mechanism of Au ions and Ag ions, which were found to be substantially different depending on the selected cell used as a probe.
关键词: electron injection,antibacterial effects,genes expression,DNA repair,quorum sensing,plasmon photocatalysis,biofilms,gold nanoparticles,porins
更新于2025-11-21 11:20:42
-
P‐type Sb‐doped Cu <sub/>2</sub> O Hole Injection Layer Integrated on Transparent ITO Electrode for Acidic PEDOT:PSS‐Free Quantum Dot Light Emitting Diodes
摘要: It is developed that transparent p-type Sb-doped cuprous oxide (ACO) integrated Sn-doped In2O3 (ITO) film as hole injection layer (HIL) and anode combined electrodes for quantum dot light emitting diodes (QD-LEDs) to substitute acidic PEDOT:PSS HIL based electrode. By graded co-sputtering of ACO and ITO targets, the graded p-type ACO buffer layer can be integrated on the surface region of the ITO electrodes. P-type conductivity of the ACO film for acting as effective HIL in QD-LEDs is confirmed by a positive Hall coefficient (1.74 (cid:1) 10 (cid:3)1). Due to the well-matched work function of p-type ACO on the ITO electrodes, the acidic PEDOT:PSS-free QD-LEDs exhibited typical current-voltage-luminescence of QD-LEDs. The successful operation of PEDOT:PSS-free QD-LED with p-type ACO integrated ITO electrode indicates that ACO and ITO anode graded sputtering is simpler fabrication steps for cost-effective QD-LEDs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable QD-LEDs.
关键词: Sn-doped In2O3,acidic PEDOT:PSS,hole injection layer,p-type conductivity,Sb-doped Cu2O,quantum dots light emitting diodes
更新于2025-11-21 10:59:37
-
Sol-gel processed vanadium oxide as efficient hole injection layer in visible and ultraviolet organic light-emitting diodes
摘要: Low-cost, high-throughput and scalable production currently boosts organic electronic device towards solution processing. Sol-gel processed aqueous vanadium oxide (h-VOx) is facilely synthesized and proven to be efficient hole injection layer (HIL) in visible and ultraviolet organic light-emitting diodes (OLEDs). Atomic force microscopy and X-ray/ultraviolet photoelectron spectroscopy measurements indicate that h-VOx behaves superior film morphology and exceptional electronic properties such as oxygen vacancy dominated non-stoichiometry and appropriate surface work function. With tris(8-hydroxy-quinolinato)aluminium as emitter, the visible OLED gives maximum luminous and power efficiencies of 6.3 cd/A and 3.2 lm/W, respectively, which are slightly superior to the counterpart with vacuum thermally-evaporated VOx (5.6 cd/A and 2.7 lm/W). With 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole as emitter, the ultraviolet OLED produces attractive short-wavelength emission of 379 nm with full width at half maximum of 40 nm and improved durability. The maximum radiance and external quantum efficiency reach 15.3 mW/cm2 and 2.92%, respectively, which are considerably enhanced in comparison with the corresponding reference (11.9 mW/cm2 and 2.32%). Current versus voltage characteristics and impedance spectroscopy analysis elucidate that h-VOx exhibits robust hole injection and accordingly high-performance OLEDs. Our results pave an alternative way for advancing organic electronic devices and VOx applications with solution process.
关键词: Organic light-emitting diode,Hole injection,Solution process,Vanadium oxide,Sol-gel method
更新于2025-11-20 15:33:11
-
Electrical and optical properties of organic light-emitting diodes with rhenium(I) complexes using DC and AC methods
摘要: Four rhenium(I) tricarbonyl complexes with 1,10-phenanthroline and derivative bearing electron-donating CH3 and OCH3 substituents were doped into host material poly (9-vinylcarbazole) (PVK) with a mass ratio of 8% as the emissive layer in organic light-emitting diodes (OLEDs). All complexes showed photoluminescence in the solution and embedded into a PVK matrix (λmax~520–550 nm). The comparison with the bare PVK emission and the compound/PVK ?lm shows that the emission of the polymer was quenched through an energy transfer process from PVK to the dopant. The electrical properties of the devices with FTO/PEDOT:PSS/Complex:PVK/Al architecture were investigated using the DC method by curves of current density-voltage and the AC method as admittance spectroscopy, which showed that the behavior of the devices is controlled by charge carrier injection rather than bulk transport.
关键词: Energy transfer,Re(I) complexes,Charge injection,Admittance spectroscopy,Emission,OLEDs
更新于2025-11-14 17:28:48
-
Hierarchical ZnO microspheres embedded in TiO2 photoanode for enhanced CdS/CdSe sensitized solar cells
摘要: Control of structural and compositional characteristics of photoanodes is a crucial step toward rapid transport of charges and high efficiency loading of dye or quantum dots in case of solar cell application. A hierarchical ZnO microspheres (ZMS) and TiO2 hybrid photoanode film was prepared for improved CdS/CdSe quantum dot sensitized solar cells (QDSCs). The addition of ZMS into TiO2 electrode films resulted in both increased short circuit current density (Jsc) and open circuit voltage (Voc). Such an improvement is ascribed to the increased light harvesting owing to scattering by ZMS and the reduced charge recombination due to the surface modification. TiO2/ZMS hybrid photoanode displays superior charge injection/transport performance due to the ZMS with unique hierarchical structure, providing charge transfer continuity and multiple electron transport channels for timely electron transport. As a result, the Jsc, Voc, and the photovoltaic conversion efficiency (PCE) were all remarkably enhanced with the insertion of hierarchical ZMS though varied appreciably with the amount of ZMS. Thus, the designed TiO2/ZMS heterostructure based QDSCs with an optimizing ZMS ratio of 20 wt% achieved a PCE of 5.99%, which is about 35% increase of the efficiency for the devices without ZMS (4.45%).
关键词: electron transport,ZnO microspheres,charge injection,quantum dot-sensitized solar cells,photoanode,light scattering
更新于2025-11-14 17:04:02
-
Ambient surface stability of thin film nanocrystalline Cu <sub/>3</sub> SbSe <sub/>4</sub> and structure-property relationships
摘要: Nanocrystalline materials have a high surface area, and hence may be significantly more reactive than their bulk counterparts under ambient conditions. This may affect device function in unexpected ways. Here, high quality crystalline Cu3SbSe4 nanocrystals are synthesized through a hot injection route, and thin films are deposited through a ligand exchange procedure. The electronic conductivity of the films increases significantly upon exposure to air, up to 80 Ω-1cm-1. This increase in conductivity is correlated to a surface oxidation as observed by XPS. The observed changes in the film upon exposure to ambient conditions are suggested to be critical for understanding the properties of these materials as they are incorporated into devices.
关键词: surface oxidation,earth abundant,copper antimony chalcogenides,hot injection,Thermoelectrics,nanoparticles
更新于2025-11-14 15:19:41
-
Scaling of High-Performance Organic Permeable Base Transistors
摘要: Organic permeable-base transistors (OPBTs) show potential for high-speed, flexible electronics. Scaling laws of OPBTs are discussed and it is shown that OPBT performance can be increased by reducing their effective device area. Comparing the performance of optimized OPBTs with state-of-the-art organic field-effect transistors (OFETs), it is shown that OPBTs have a higher potential for an increased transit frequency. Not only do OPBTs reach higher transconductance values without the need for sophisticated structuring techniques, but they are also less sensitive to parasitic contact resistances. With the help of a 2D numerical model, the reduced contact resistances of OPBTs are explained by a homogeneous injection of current across the entire emitter electrode, compared to injection in a small area along the edge of the source of OFETs.
关键词: scaling,injection,organic permeable-base transistors,contact resistance,transit frequency
更新于2025-10-22 19:50:37
-
Surface-to-volume ratio drives photoelelectron injection from nanoscale gold into electrolyte
摘要: Hot charge carriers from plasmonic nanomaterials currently receive increased attention due to their promising potential in important applications such as solar water splitting. While a number of important contributions were made on plasmonic charge carrier generation and their transfer into the metal’s surrounding in the last decades, the local origin of those carriers is still unclear. With our study employing a nanoscaled bicontinous network of nanoporous gold, we take a comprehensive look at both subtopics in one approach and give unprecedented insights into the physical mechanisms controlling the broadband optical absorption and the generation and injection of hot electrons into an adjacent electrolyte where they enhance electrocatalytic hydrogen evolution. This absorption behavior is very different from the well-known localized surface plasmon resonance effects observed in metallic nanoparticles. For small ligament sizes the plasmon decay in our network is strongly enhanced via surface collisions of electrons. These surface collisions are responsible for the energy transfer to the carriers, thus, the creation of hot electrons from a broad spectrum of photon energies. As we reduce the gold ligament sizes below 30 nm, we demonstrate an occurring transition from absorption that is purely exciting 5d-electrons from deep below the Fermi level to an absorption which significantly excites “free” 6sp-electrons to be emitted. We differentiate these processes via assessing the internal quantum efficiency of the gold network photoelectrode as a function of the feature size providing a size-dependent understanding of the hot electron generation and injection processes in nanoscale plasmonic systems. We demonstrate that the surface effect - compared to the volume effect – becomes dominant and leads to significantly improved efficiencies. The most important fact to recognize is that in the surface photoeffect presented here, absorption and electron transfer are both part of the same quantum mechanical event.
关键词: Hot electron,Photoemission,Water splitting,Hydrogen evolution,Carrier injection,Surface damping,Nanoporous Au
更新于2025-10-22 19:40:53