- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Implementing Inkjet-Printed Transparent Conductive Electrodes in Solution-Processed Organic Electronics
摘要: Through the use of solution-based materials, the field of printed organic electronics has not only made new devices accessible, but also allows the process of manufacture to move toward a high throughput industrial scale. However, while solution-based active layer materials in these systems have been studied quite intensely, the printed electrodes and specifically the transparent conductive anode have only relatively recently been investigated. In this progress report, the use of metal nanoparticles within printed organic electronic devices is highlighted, specifically their use as replacement of the commonly used indium tin oxide transparent conductive electrode within organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). A cross fertilization between the applications is expected since an OPV device is essentially an inversely operated OLED. This report aims to highlight the use of inkjet-printed nanoparticles as cost-effective electrodes for printed optoelectronic applications and discusses methods to improve the conductive and interfacial properties. Finally, in an outlook, the use of these types of metal nanoparticle inks to manipulate light management properties, such as outcoupling, in the device is investigated.
关键词: embedded silver and copper grid,metal nanoparticle ink,inkjet-printed electronics,transparent electrode,solution-processed optoelectronics
更新于2025-09-23 15:23:52
-
All-2D Material Inkjet-Printed Capacitors: Towards Fully-Printed Integrated Circuits
摘要: A well-defined insulating layer is of primary importance in the fabrication of passive (e.g. capacitors) and active (e.g. transistors) components in integrated circuits. One of the most widely known 2-Dimensional (2D) dielectric materials is hexagonal boron nitride (hBN). Solution-based techniques are cost-effective and allow simple methods to be used for device fabrication. In particular, inkjet printing is a low-cost, non-contact approach, which also allows for device design flexibility, produces no material wastage and offers compatibility with almost any surface of interest, including flexible substrates. In this work we use water-based and biocompatible graphene and hBN inks to fabricate all-2D material and inkjet-printed capacitors. We demonstrate an areal capacitance of 2.0 ± 0.3 nF cm-2 for a dielectric thickness of ~3 μm and negligible leakage currents, averaged across more than 100 devices. This gives rise to a derived dielectric constant of 6.1 ± 1.7. The inkjet printed hBN dielectric has a breakdown field of 1.9 ± 0.3 MV cm-1. Fully printed capacitors with sub-μm hBN layer thicknesses have also been demonstrated. The capacitors are then exploited in two fully printed demonstrators: a resistor-capacitor (RC) low-pass filter and a graphene-based field effect transistor.
关键词: capacitors,2D-materials,integrated circuits,inkjet,printed electronics
更新于2025-09-09 09:28:46