- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells
摘要: Organic–inorganic hybrid perovskites have excellent optical and electronic properties; exploitation of these traits has increased the power conversion efficiency of perovskite photovoltaics (PePVs) to 25.2%. However, perovskites are chemically unstable, and this deficit has critically impeded their commercialization. Device degradation occurs at the interfaces of PePVs with multiple degradation mechanisms: decomposition of organic cations in perovskites; generation of inorganic byproducts in perovskites; superoxide or trap sites at the interface of the charge-transport layer; excess charge carriers in perovskites; interfacial migration between perovskites and electrodes. This review considers the critical functions of the interfacial materials to overcome the various degradation at the interfaces of the PePVs. The working mechanisms stabilizing the interface of PePVs are categorized: passivation from atmosphere; inactivation of defect states; migration-blocking. Then, the outstanding interfacial layers made of organic materials (defect passivation, physical robustness, and chemical inactivation) and inorganic materials (chemically passivating metal oxide, physically passivating metal oxide, and low-temperature processed inorganic materials) are reviewed according to the stabilizing mechanisms. In addition, the influences of inorganic interconnecting layers in tandem PePVs are reviewed, with respect of various effects of interfacial buffer materials at the interface with perovskites.
关键词: device lifetime,interfacial layers,perovskite solar cells,stability,degradation mechanisms
更新于2025-09-23 15:21:01
-
Composite Interlayer Consisting of Alcohol-Soluble Polyfluorene and Carbon Nanotubes for Efficient Polymer Solar Cells
摘要: We report the synthesis of composite interlayers using alcohol-soluble polyfluorene (ASP)-wrapped single-walled carbon nanotubes (SWNTs) and their application as electron transport layers for efficient organic solar cells. The ASP enables the individual dispersion of SWNTs in solution. The ASP-wrapped SWNT solutions are stable for 54 days without any aggregation or precipitation, indicating their very high dispersion stability. Using the ASP-wrapped SWNTs as a cathode interlayer on zinc oxide nanoparticles (ZnO NPs), a power conversion efficiency of 9.45% is obtained in PTB7-th:PC71BM-based organic solar cells, which is mainly attributed to the improvement in the short circuit current. Performance enhancements of 18% and 17% are achieved compared to those of pure ZnO NPs and ASP on ZnO NPs, respectively. In addition, the composite interlayer is applied to non-fullerene-based photovoltaics with PM6:Y6, resulting in the PCE up to 14.37%. The type of SWNT (e.g., in terms of diameter range and length) is not critical to the improvement in the charge-transport properties. A low density of SWNTs in the film (~1 SWNTs/μm2 for ASP-wrapped SWNTs) has a significant influence on the charge transport in solar cells. The improvement in the performance of the solar cell is attributed to the increased internal quantum efficiency, balanced mobility between electrons and holes, and minimized charge recombination.
关键词: interfacial layers,alcohol-soluble polyfluorene,interlayers,organic solar cells,conjugated polyelectrolytes,Carbon nanotubes,electron transport layers,composites
更新于2025-09-23 15:19:57
-
Prolonged Lifetime in Nanocrystal Light-Emitting Diodes Incorporating MoS <sub/>2</sub> -Based Conjugated Polyelectrolyte Interfacial Layer as an Alternative to PEDOT:PSS
摘要: Colloidal semiconductor nanocrystals (NCs), and recently nanoplatelets (NPLs), owing to their efficient and narrowband luminescence, are considered as frontier materials for the light-emitting diode (LED) technology. NC-LEDs typically incorporate interfacial layers as charge regulators to ensure charge balancing and high performance. In this communication, we show the prolongation of the lifetime of multilayer solution-processed NC-LEDs by combining a self-doped conductive conjugated polyelectrolyte and exfoliated molybdenum disulfide (MoS2) flakes as an alternative to PEDOT:PSS. The ink features a neutral pH and a tunable hydrophobicity that mainly results in a remarkable stability of LEDs, using CdSe/CdZnS NPLs.
关键词: di-chalcogenides,colloidal nanoplatelets,interfacial layers,light-emitting devices,conjugated polyelectrolytes
更新于2025-09-23 15:19:57
-
Efficient Cathode Interfacial Materials Based on Triazine/Phosphine Oxide for Conventional and Inverted Organic Solar Cells
摘要: Cathode interfacial layers (CIL) have been applied in organic solar cells (OSCs) for the enhancement of photovoltaic characteristics. Most of them are employed in either conventional organic solar cells (COSCs) or inverted organic solar cells (IOSCs) only. Herein, we have designed and synthesized two cathode interfacial materials, namely, 3-(4,6-bis(4-bromophenoxy)-1,3,5-triazin-2-yl)-2,6-difluorophenyl)diphenylphosphine oxide (Br-PO-TAZ) and 4,4'-((6-(3-(diphenylphosphoryl)-2,4-difluorophenyl)-1,3,5-triazine-2,4-diyl)bis(oxy))dibenzonitrile (CN-PO-TAZ), and utilized them as CILs for both COSCs and IOSCs. The incorporation of our new CIL layers significantly enhanced the photovoltaic performance compared to COSCs and IOSCs without the CILs. The CN-PO-TAZ exhibited a power conversion efficiency (PCE) of 8.19% for COSCs and 8.33% for IOSCs, whereas Br-PO-TAZ yielded a PCE of 8.15% for COSCs and 8.23% for IOSCs, respectively. The improved performance was attributed to the multiple favorable factors: significantly reducing leakage current, decreasing series resistance, suppressing recombination, efficient charge transport and collection. Moreover, the CIL layers helped for sustaining device stability because they served as an internal shield against humidity.
关键词: cathode interfacial layers,organic solar cell,conventional/inverted,triazine/phosphine oxide unit,stability
更新于2025-09-19 17:13:59
-
Molecular Engineering on Bis(Benzothiophene-S,S-Dioxide)-Based Large Band-Gap Polymers for Interfacial Modifications in Polymer Solar Cells
摘要: The development of effectively universal interfacial materials for both conventional and inverted polymer solar cells (PSCs) plays a very crucial role in achieving highly photovoltaic performance and feasible device engineering. In this study, two novel alcohol-soluble conjugated polymers (PBSON-P and PBSON-FEO) with bis(benzothiophene-S,S-dioxide)-fused aromatics (FBTO) as core unit and amino as functional groups are synthesized. They are utilized as universal cathode interfacial layers for both conventional and inverted PSCs simultaneously. Ascribing to the enlarged conjugated planarity and higher electron affinity for FBTO unit, both of PBSON-P and PBSON-FEO exhibit versatile electron-transporting abilities. They show wide band gaps that are important for light absorption in inverted PSCs, at which point PBSON-P and PBSON-FEO are more progressive than some of the reported small band-gap cathode interfacial materials. Importantly, PBSON-P and PBSON-FEO display deep HOMO energy levels, which can block holes at the cathode and thus increase fill factor. As a result, both of conventional and inverted PSCs using PBSON-P and PBSON-FEO as cathode interlayers realize high photovoltaic performance. Therefore, this series of novel polymers are amphibious cathode interfacial materials for high-performance conventional and inverted PSCs.
关键词: amino,cathode interfacial layers,large band-gap polymers,benzothiophene-S,S-dioxide,polymer solar cells
更新于2025-09-12 10:27:22