- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Interlayer interactions in 2D WS <sub/>2</sub> /MoS <sub/>2</sub> heterostructures monolithically grown by <i>in situ</i> physical vapor deposition
摘要: The understanding of the interlayer interactions in vertical heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is essential to exploit their advanced functions for next-generation optoelectronics and electronics. Here we demonstrate a monolithic stacking of TMDC heterostructures with 2D MoS2 and WS2 layers via in situ physical vapor deposition. We find that the kinetically sputtered atoms are able to overcome the interlayer van der Waals forces between the vertical layers, leading to a substantial number of randomly oriented stacks with various twist angles. Our X-ray photoelectron spectroscopy results reveal a type II heterojunction for 2D WS2/MoS2, showing a band alignment with a conduction band offset of 0.41 eV and a valence band offset of 0.25 eV. In particular, we observed a remarkable interlayer coupling and associated exciton relaxation at the hetero-interface due to the misoriented stacks. By analyzing the band structures and charge densities of the vertical stacks using first-principles calculations, we reveal that the interlayer coupling is a function of the interlayer distance and is relatively insensitive to the angle of misorientation.
关键词: band alignment,2D materials,physical vapor deposition,interlayer coupling,heterostructures
更新于2025-09-19 17:15:36
-
High energy shift in the optical conductivity spectrum of the bilayer graphene
摘要: We calculate theoretically the optical conductivity in the bilayer graphene by considering Kubo-Green-Matsubara formalism. Different regimes of the interlayer coupling parameter have been considered in the paper. We show that the excitonic effects substantially affect the optical conductivity spectrum at the high-frequency regime when considering the full interaction bandwidth, leading to a total suppression of the usual Drude intraband optical transition channels and by creating a new type of optical gap. We discuss the role of the interlayer coupling parameter and the Fermi level on the conductivity spectrum, going far beyond the usual tight-binding approximation scheme for the extrinsic bilayer graphene.
关键词: interlayer coupling,excitonic effects,Kubo-Green-Matsubara formalism,bilayer graphene,optical conductivity
更新于2025-09-04 15:30:14