修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

137 条数据
?? 中文(中国)
  • Geometry Acquisition and 3D Modelling of a Wind Tower using a 3D Laser Scanning Technology

    摘要: This work aims at acquiring the interior shape of wind towers by means of a 3D laser scanning system (LSS). Typically, wind towers are made of structural steel sheets and their fabrication consists of rolling and welding of abutted rolled sheets. This task is typically carried out by welding robots moving through the tower structure. In this study, the developed setup consists of a camera and a circular laser module mounted on the welding robot’s arm traveling through the tower with a constant velocity. The deployed system assists in examining the tower’s interior surface, making it possible to obtain its 3D profile. It will therefore be beneficial for monitoring the geometric changes which occur during the welding process. Encouraging results have been achieved in the characterization of the tower’s geometry, contributing to the assessment of the robustness and accuracy of the deployed 3D LSS.

    关键词: Image processing,Wind towers,3D laser scanning,Inspection

    更新于2025-09-12 10:27:22

  • A Novel Method for Digitalisation of Test Fields by Laser Scanning

    摘要: In this article, a novel, media undisruptive method for the measurement of photogrammetric test fields using a laser tracker is presented. The new approach is precise and versatile in its application. It relies on image processing on the quasi continuous measurements of a hand-held laser scanner and laser tracker combination. The field of useful applications is large. In this article, we show the benefit in the field of camera calibration. Essential for highly accurate photogrammetric measurements is a careful calibration, since all cameras have optical distortions due to manufacturing processes of the lens. The calibration can be done by e.g. using a test field. In some cases, 3D coordinates of the control points are necessary. These coordinates are often determined by photogrammetry itself and tacheometric angle measurements in advance. A scale, e.g. a subtense bar, usually needs to be included which increases the measuring efforts. The method bases on the measured 3D point cloud of a test field. With this technique, not only the centers of all control points are accessible. Other geometric features can be chosen too. Since the point cloud consist of many single point measurements, every control point determination has already a high statistical redundancy. The 3D coordinates of every single control point are extracted from the point cloud, making an additional scale obsolete. Presently, the position accuracy is ≤ 50 μm (MPE), which is mainly limited by the laser scanner used in this article. The here-presented technique can be applied to all kinds of shapes, dimensions, materials, numbers and arrangements of control points. Furthermore, it is a lot faster and easier to handle than the angle measurements of the tacheometer.

    关键词: Laser scanning,Photogrammetric calibration,Test field,Geometric calibration,3D point cloud

    更新于2025-09-12 10:27:22

  • Metro gauge inspection system based on mobile laser scanning technology

    摘要: Detecting metro gauge is very important for the safe operation of the subway. In this study, we design a low-cost metro tunnel mobile scanning system (MDS-TJ-1), which integrates a laser profile scanner with an inertial measure unit and an odometer to provide positioning and attitude parameters of the trajectory. The Lagrange interpolation is used to accomplish the time unification of different sensors. A dynamic alignment scheme for profile scanner is proposed based on the designed plane reflector target with high reflectivity. The error accumulation of the odometer is corrected by recognising the tunnel longitudinal joints, and finish the multi-source data fusion. The horizontal ray method is developed to process the metro gauge inspection. The experiment results show that the alignment accuracy of scanner is within 8 mm, the inner coincidence of the point cloud is within 3 cm, and the average error of the gauge inspection is 7.8 mm.

    关键词: Alignment,Data fusion,Gauge inspection,Point cloud,Mobile laser scanning,Metro tunnel,Multi-sensors

    更新于2025-09-12 10:27:22

  • A Lightweight Leddar Optical Fusion Scanning System (FSS) for Canopy Foliage Monitoring

    摘要: A growing need for sampling environmental spaces in high detail is driving the rapid development of non-destructive three-dimensional (3D) sensing technologies. LiDAR sensors, capable of precise 3D measurement at various scales from indoor to landscape, still lack affordable and portable products for broad-scale and multi-temporal monitoring. This study aims to configure a compact and low-cost 3D fusion scanning system (FSS) with a multi-segment Leddar (light emitting diode detection and ranging, LeddarTech), a monocular camera, and rotational robotics to recover hemispherical, colored point clouds. This includes an entire framework of calibration and fusion algorithms utilizing Leddar depth measurements and image parallax information. The FSS was applied to scan a cottonwood (Populus spp.) stand repeatedly during autumnal leaf drop. Results show that the calibration error based on bundle adjustment is between 1 and 3 pixels. The FSS scans exhibit a similar canopy volume profile to the benchmarking terrestrial laser scans, with an r2 between 0.5 and 0.7 in varying stages of leaf cover. The 3D point distribution information from FSS also provides a valuable correction factor for the leaf area index (LAI) estimation. The consistency of corrected LAI measurement demonstrates the practical value of deploying FSS for canopy foliage monitoring.

    关键词: terrestrial laser scanning,canopy monitoring,monocular camera,sensor fusion,LiDAR,Leddar,structure from motion,leaf area index

    更新于2025-09-12 10:27:22

  • Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR

    摘要: Above-Ground Biomass (AGB) product calibration and validation require ground reference plots at hectometric scales to match space-borne missions' resolution. Traditional forest inventory methods that use allometric equations for single tree AGB estimation suffer from biases and low accuracy, especially when dealing with large trees. Terrestrial Laser Scanning (TLS) and explicit tree modelling show high potential for direct estimates of tree volume, but at the cost of time demanding fieldwork. This study aimed to assess if novel Unmanned Aerial Vehicle Laser Scanning (UAV-LS) could overcome this limitation, while delivering comparable results. For this purpose, the performance of UAV-LS in comparison with TLS for explicit tree modelling was tested in a Dutch temperate forest. In total, 200 trees with Diameter at Breast Height (DBH) ranging from 6 to 91 cm from 5 stands, including coniferous and deciduous species, have been scanned, segmented and subsequently modelled with TreeQSM. TreeQSM is a method that builds explicit tree models from laser scanner point clouds. Direct comparison with TLS derived models showed that UAV-LS reliably modelled the volume of trunks and branches with diameter ≥30 cm in the mature beech and oak stand with Concordance Correlation Coefficient (CCC) of 0.85 and RMSE of1.12 m3. Including smaller branch volume led to a considerable overestimation and decrease in correspondence to CCC of 0.51 and increase in RMSE to 6.59 m3. Denser stands prevented sensing of trunks and further decreased CCC to 0.36 in the Norway spruce stand. Also small, young trees posed problems by preventing a proper depiction of the trunk circumference and decreased CCC to 0.01. This dependence on stand indicated a strong impact of canopy structure on the UAV-LS volume modelling capacity. Improved flight paths, repeated acquisition flights or alternative modelling strategies could improve UAV-LS modelling performance under these conditions. This study contributes to the use of UAV-LS for fast tree volume and AGB estimation on scales relevant for satellite AGB product calibration and validation.

    关键词: Above-Ground Biomass (AGB),Forest,UAV,Laser scanning,Quantitative Structure Model (QSM)

    更新于2025-09-12 10:27:22

  • Three‐dimensional reconstruction of fluvial surface sedimentology and topography using personal mobile laser scanning

    摘要: This investigation compares a personal mobile laser scanning (MLS) survey using a Leica Pegasus Backpack that integrates Velodyne Puck VLP-16 sensors, and a multi-station Terrestrial Laser Scanning (TLS) survey. Independent check points and a cloud-to-cloud comparison indicated that personal MLS had similar vertical errors to static TLS. Analysis of wearable laser scanning point cloud variability enabled the mapping of surface sedimentology. Where terrain is navigable by foot, wearable laser scanning enables rapid acquisition of point cloud data.

    关键词: sedimentology,morphodynamics,topography,Personal mobile laser scanning,terrestrial laser scanning

    更新于2025-09-11 14:15:04

  • Reconstruction of image sequences from ungated and scanning-aberrated laser scanning microscopy images of the beating heart

    摘要: Fluorescence laser-scanning microscopy is a well-established imaging technique in biology, available in many imaging facilities to investigate structures within live animal embryos such as zebrafish. Laser scanning microscopes (LSM) are limited when used to study dynamic heart morphology or function. Despite their ability to resolve static cardiac structures, the fast motion of the beating heart introduces severe artifacts in the scanned images and gating the acquisitions to the heartbeat is difficult to implement on traditional microscopes. Furthermore, although alternative high-speed imaging instruments exist, they are not widely available (due to cost or hardware complications), putting dynamic cardio-vascular imaging off-limits for many researchers. Here, we propose a method that allows imaging the beating heart on conventional LSMs. Our approach takes a set of images containing scanning aberrations, each triggered at an arbitrary time in the cardiac cycle, and assembles an image sequence that covers a single cardiac heartbeat. The steps are: (i) frame sorting by solving a traveling salesman problem; (ii) heartbeat duration estimation; and (iii) scan-delay compensation via space-time resampling. We characterize the performance of our method on synthetic data under several light intensities and scanning speeds. We further illustrate our method's applicability on experimental images acquired in live zebrafish larvae, and show that the reconstruction quality approaches that of fast, state-of-the-art microscopes. Our technique opens the possibility of using LSMs to carry out studies of cardiac dynamics, without the need for prospective gating or fast microscopes.

    关键词: cardiac imaging,scanning aberration compensation,laser scanning microscopy,zebrafish imaging,fast microscopy,combinatorial optimization,traveling salesman problem,image and video sampling,Computational microscopy,confocal microscopy

    更新于2025-09-11 14:15:04

  • A Two-stage Improvement Method for Robot Based 3D Surface Scanning

    摘要: As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.

    关键词: robotic manipulator,two-stage scanning method,3D laser scanning,handy scanner,surface reconstruction

    更新于2025-09-11 14:15:04

  • Optimized free-form surface modeling of point clouds from laser-based measurement

    摘要: Freeform parameterizations to reproduce structure deformation are increasingly important topics in laser-scanner-based deformation analyses. High-accuracy assurance of free-form surface approximation is extremely critical for reliable deformation analysis. One main challenge in this field is the model selection. Improper model complexity could result in under-fitting the real object shape or overfitting data noises, and thus a failure of deformation analysis. A multi-sensor system could integrate advantages of different sensors and improve the quality of mission completed. This paper combines terrestrial laser scanning (TLS) and laser tracker (LT) technologies, to enhance high-accuracy surface modeling in deformation analysis. A surface-based B-spline approximation and a multi-sensor system are investigated, the latter of which focuses mainly on the combination of TLS and LT technologies. The innovation of this paper is that the surface-based B-spline approximation is validated and optimized with LT corner cube reflectors. Hypothesis testing is adopted to select the best parameter setting by judging most consistency of TLS and LT in various epochs. In the B-spline surface modeling, both instrumental and numerical uncertainties are considered. We use the instrumental uncertainty model based on intensity value, as well as numerical uncertainty based on adjustment theories. A sampling strategy is proposed to avoid data gaps and obtain even distributed data points.

    关键词: multi-sensor,laser tracker,Surface modeling,B-spline approximation,terrestrial laser scanning

    更新于2025-09-11 14:15:04

  • Estimating Mangrove Forest Volume Using Terrestrial Laser Scanning and UAV-Derived Structure-from-Motion

    摘要: Mangroves provide a variety of ecosystem services, which can be related to their structural complexity and ability to store carbon in the above ground biomass (AGB). Quantifying AGB in mangroves has traditionally been conducted using destructive, time-consuming, and costly methods, however, Structure-from-Motion Multi-View Stereo (SfM-MVS) combined with unmanned aerial vehicle (UAV) imagery may provide an alternative. Here, we compared the ability of SfM-MVS with terrestrial laser scanning (TLS) to capture forest structure and volume in three mangrove sites of differing stand age and species composition. We describe forest structure in terms of point density, while forest volume is estimated as a proxy for AGB using the surface differencing method. In general, SfM-MVS poorly captured mangrove forest structure, but was efficient in capturing the canopy height for volume estimations. The differences in volume estimations between TLS and SfM-MVS were higher in the juvenile age site (42.95%) than the mixed (28.23%) or mature (12.72%) age sites, with a higher stem density affecting point capture in both methods. These results can be used to inform non-destructive, cost-effective, and timely assessments of forest structure or AGB in mangroves in the future.

    关键词: mangroves,terrestrial laser scanning,forest structure,structure-from-motion

    更新于2025-09-11 14:15:04