- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
One-step growth of centimeter-scale doped multilayer MoS <sub/>2</sub> films by pulsed laser-induced synthesis
摘要: Recently, two-dimensional MoS2 has attracted interest for applications in electronics, optics, energy storage, and catalysis. Furthermore, n-type or p-type doping of MoS2 can result in improved film properties, thereby expanding the range of applicability. However, the rapid preparation of large-scale MoS2 films and the e?ective doping of such films remain challenging. Herein, we report on a one-step growth method called pulsed laser-induced synthesis (PLIS) that can resolve these challenges and can quickly (5–10 min) prepare centimeter-scale MoS2 films directly and selectively on a substrate. A continuous length of up to 1.412 cm can be achieved with MoS2 films prepared by the described in situ doping of noble metals (Au, Pt, and Pd) to convert MoS2 into a p-type semiconductor was realized, consistent with the results obtained from first-principles calculations. The STEM images reveal that the phenomena of surface modification and cation substitution occur in the doped MoS2 films. The doped MoS2 films were further processed into a p-type field effect transistor with an on/off ratio of 105. Importantly, this technique can be applied to other transition metal dichalcogenides (TMDCs) while employing various doping elements; this scheme provides an innovative method for upscaling production and large-area doping of TMDC thin films.
关键词: TMDCs,MoS2,field effect transistor,doping,pulsed laser-induced synthesis
更新于2025-09-23 15:21:01
-
Laser-Assisted Fabrication for Metal Halide Perovskite-2D Nanoconjugates: Control on the Nanocrystal Density and Morphology
摘要: We report on a facile and rapid photo-induced process to conjugate graphene-based materials with metal-halide perovskite nanocrystals. We show that a small number of laser pulses is sufficient to decorate the 2-dimensional (2D) flakes with metal-halide nanocrystals without affecting their primary morphology. At the same time, the density of anchored nanocrystals could be finely tuned by the number of irradiation pulses. This facile and rapid room temperature method provides unique opportunities for the design and development of perovskite-2D nanoconjugates, exhibiting synergetic functionality by combining nanocrystals of different morphologies and chemical phases with various 2D materials.
关键词: graphene oxide,2D materials,photo-induced processes,laser-induced synthesis,nanoparticles,anion exchange,synergistic effects
更新于2025-09-23 15:19:57
-
Simultaneous laser-induced synthesis and micro-patterning of a metal organic framework
摘要: Micro-patterning of a metal organic framework (MOF) from a solution of precursors is achieved by local laser heating. Nano-sized MOFs are formed, followed by rapid assembly due to convective flows around a heat-induced micro-bubble. This laser-induced bottom-up technique is the first to suggest simultaneous synthesis and micro-patterning of MOFs, alleviating the need for pre-preparation and stabilization.
关键词: laser-induced synthesis,metal organic framework,Marangoni convection flows,micro-patterning,nano-MOFs
更新于2025-09-12 10:27:22
-
Controlling the Morphologies of Silver Aggregates by Laser-Induced Synthesis for Optimal SERS Detection
摘要: Controlling the synthesis of metallic nanostructures for high quality surface-enhanced Raman scattering (SERS) materials has long been a central task of nanoscience and nanotechnology. In this work, silver aggregates with different surface morphologies were controllably synthesized on a glass–solution interface via a facile laser-induced reduction method. By correlating the surface morphologies with their SERS abilities, optimal parameters (laser power and irradiation time) for SERS aggregates synthesis were obtained. Importantly, the characteristics for largest near-field enhancement were identified, which are closely packed nanorice and flake structures with abundant surface roughness. These can generate numerous hot spots with huge enhancement in nanogaps and rough surface. These results provide an understanding of the correlation between morphologies and SERS performance, and could be helpful for developing optimal and applicable SERS materials.
关键词: laser-induced synthesis,silver aggregates,surface-enhanced Raman scattering,hot spots
更新于2025-09-11 14:15:04