修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

45 条数据
?? 中文(中国)
  • A Light-Driven Micromotor with Complex Motion Behaviors for Controlled Release

    摘要: Micromotor that exhibits various movement behaviors has attracted more attention in recent years. However, most researchers focus on its motion behavior and few have studied the fluid flow surrounding it. In this work, a novel micromotor with both controlled motion behavior and surrounding fluid flow, which is driven by near-infrared (NIR) light based on the unique Marangoni effect caused by the light irradiation of its constituent, i.e., polypyrrole (PPy), is reported. Interestingly, these motion behaviors and the surrounding fluid flow can be easily switched by adjusting the incident angle of the NIR laser. This unique property may have potentials in different fields. Among others, its application in remotely controlled targeted delivery and release is demonstrated.

    关键词: micromotors,cargo release,light-driven,polypyrrole

    更新于2025-11-21 11:03:13

  • Enhanced Charge Separation in g-C3N4 – BiOI Heterostructures for Visible Light Driven Photoelectrochemical Water Splitting

    摘要: Heterojunctions of the low bandgap semiconductor bismuth oxyiodide (BiOI) with bulk multilayered graphitic carbon nitride (g-C3N4) and few layered graphitic carbon nitride sheets (g-C3N4-S) are synthesized and investigated as an active photoanode material for sunlight driven water splitting. HR-TEM and elemental mapping reveals formation of a unique heterostructure between BiOI platelets and the carbon nitride (g-C3N4 and g-C3N4-S) network that consisted of dendritic BiOI nanoplates surrounded by g-C3N4 sheets. The presence of BiOI in g-C3N4-S/BiOI and g-C3N4-S/BiOI nanocomposites extends the visible light absorption profile from 500 nm up to 650 nm. Due to excellent charge separation in g-C3N4/BiOI and g-C3N4-S/BiOI, evident from quenching of the carbon nitride photoluminescence (PL) and a decrease in the PL lifetime, a significant increase in photoelectrochemical performance is observed for both types of g-C3N4-BiOI heterojunctions. In comparison to heterojunctions of bulk g-C3N4 with BiOI, the nancomposite consisting of few layered sheets of g-C3N4 and BiOI exhibits higher photocurrent density due to lower recombination in few layered sheets. A synergistic trap passivation and charge separation is found to occur in the g-C3N4-S/BiOI nanocomposite heterostructure which results in a higher photocurrent and a lower charge transfer resistance.

    关键词: visible light driven photocatalysis,earth abundant semiconductor heterostructures,Graphenic semiconductors,photoelectrochemistry

    更新于2025-11-21 11:01:37

  • Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array

    摘要: Micro/nanomotors can effectively convert other forms of energy into mechanical energy, which have been widely used in microscopic fields. However, it is still challenging to integrate the micro/nanomotors to perform complex tasks for broad applications. Herein, a new mode for driving the collective motion behaviors of integrated micro/nanomotors in a liquid by plasmonic heating is reported. The integrated micro/nanomotors, constituted by gold hollow microcone array (AuHMA), are fabricated via colloidal lithography. Owing to the excellent plasmonic-heating property of AuHMA, the integrated micro/nanomotors can generate vapor bubbles in the liquid as exposure to near-infrared (NIR) irradiation, therefore inducing versatile motions via on/off NIR irradiation. The floating-diving motions are reversible for at least 60 cycles without fatigue. In addition, precise manipulation of the coordinated motion behaviors, including bending, convex, and jellyfish-like floating motions, can be realized by adjusting the irradiated positions of incident NIR light together with the sizes and shapes of AuHMA films. Moreover, the AuHMA film can act as a robust motor to drive a foam craft over 57 folds of its own weight as exposure to NIR irradiation. Our investigation into the NIR-driven AuHMA film provides a facile approach for obtaining integrated micro/nanomotors with controllable collective motions, which holds promise in remotely controlled smart devices and soft robotics in liquids.

    关键词: motor,plasmonic heating,gold hollow microcone,controllable motions,light-driven

    更新于2025-11-21 11:01:37

  • In-situ solid phase thermal transformation of self-assembled melamine phosphotungstates produce efficient visible light photocatalysts

    摘要: Visible-light-driven stacked-layer heterogeneous photocatalyst carbonitride/tungstophosphate (TCN) was constructed via in-situ solid-state thermal transformation using melamine phosphotungstate (MPW). The structural, morphological and optical properties of the samples were investigated. Compared to the MPW hybrids and phosphotungstic acid hydrate, the TCN photocatalysts showed excellent visible light photocatalytic activity. During the thermal transformation, the melamine molecules polymerize to form the defective heptazine structure carbonitride attached to the surface of mixed-valence Keggin units. The interfacial POMs anions-p interactions, ligand-to-metal charge transfer and mix-valence organic-POMs structure makes the electrons fully delocalized over the MPW hybrids, and the TCN photocatalysts obtain the extended light absorption. The Keggin units accept and transfer electrons, so the recombination of photogenerated carriers is suppressed. 13TCN-390 obtains the optimal photocatalytic activity, its photocatalytic degradation efficiency of imidacloprid and rate constant k are 6.38 and 13.50 times than that of CN-390, respectively. The enhanced photocatalytic activity arises from the extended light absorption, suppressed photogenerated carriers’ recombination, surface structure defect and suitable band structure. h+ and (cid:1)OH are the main reactive species when the proposed photocatalytic mechanism was done. This study provides a promising construction strategy for polymer/POMs photocatalysts using different organic-POMs hybrids.

    关键词: Melamine phosphotungstate,Visible-light-driven photocatalyst,Degradation,Thermal transformation

    更新于2025-11-14 17:04:02

  • 2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterostructure for high photocatalytic activity

    摘要: A novel 2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterojunction photocatalyst with modified interfacial microstructure and electronic properties was synthesized by ultrasonic-assisted calcination method. The remarkably active g-C3N4 could provide high productivity of photogenerated electrons and holes. Meanwhile, the O/OH-terminated Ti3C2 and by-product TiO2 could act as excellent supporters by migrating electrons in TiO2@Ti3C2/g-C3N4 hybrids. As a result, the highest photocatalytic activities in the degradation of aniline and RhB were increased to 5 and 1.33 times higher than that of pristine g-C3N4 under visible-light irradiation, respectively. Furthermore, we proposed that n–n heterojunction and n-type Schottky heterojunction were built up across their interfaces, which efficiently improve the transition of electrons and further promote the photocatalytic activity of TiO2@Ti3C2/g-C3N4 hybrids. More appealingly, all the results highlight that the environment-friendly TiO2@Ti3C2/g-C3N4 heterojunction hybrids would be desirable candidates for pollutants degradation.

    关键词: 2D materials,photocatalytic activity,TiO2@Ti3C2/g-C3N4,ternary heterojunction,pollutants degradation,visible-light-driven

    更新于2025-11-14 17:03:37

  • Efficient photocatalytic debromination of 2,2?,4,4?-tetrabromodiphenyl ether by Ag-loaded CdS particles under visible light

    摘要: Highly active and visible light-driven Ag-loaded CdS photocatalysts were prepared via a hydrothermal synthesis and photodeposition method. The removal and debromination of 2,2?,4,4?-tetrabromodiphenyl ether was achieved efficiently using this Ag-loaded CdS under visible light, with a removal efficiency of 100% and a debromination ratio of 44.3% being achieved within 30 min. Both the reaction solvent and the water content were found to have a strong influence on the removal efficiency and the debromination ratio. In addition, the stepwise debromination preference was ortho > para, thereby indicating that the main debromination pathway was electron reduction. The stability and efficiency of these Ag-loaded CdS photocatalysts for the removal of BDE47 were satisfactory, and so our results confirmed the development of a promising visible light-driven catalyst for the removal of polybrominated diphenyl ethers.

    关键词: Debromination ratio,Visible light-driven,Ag-loaded CdS,Photocatalyst,Removal efficiency

    更新于2025-09-23 15:23:52

  • High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: Kinetics, intermediates and mechanism

    摘要: The photoexcited charge carriers trapping was an effective way to generate a large number of active species like O2?? and ?OH radicals to oxidize pharmaceutical molecules. In ternary Cu/Bi2Ti2O7/rGO composite Cu nanoparticles and rGO sheets act as charge carrier trappers and the suppression of e--h+ pair recombination was confirmed by Photoluminescence analysis. The Cu/Bi2Ti2O7/rGO composite exhibited higher photocatalytic degradation efficiency for degradation of ibuprofen and tetracycline molecules under visible light irradiation within 90 min. Therefore, this research designates a promising strategy for higher photoexcited charge carrier trapping photocatalyst design for efficient degradation of pharmaceutical molecules.

    关键词: Nanocomposite,Visible light-driven,Hydrothermal,Pharmaceutical contamination.,Charge carrier trappers

    更新于2025-09-23 15:23:52

  • The design of a polyaniline-decorated three dimensional W18O49 composite for full solar spectrum light driven photocatalytic removal of aqueous nitrite with high N2 selectivity

    摘要: Photocatalysis using solar energy is the most promising green technology for nitrite removal. However, effective photocatalytic performance is often challenged by the limited light absorption, utilization of expensive noble metals and undesired products (nitrate and ammonium). Here, we report for the first time that a full solar light response polyaniline-decorated three dimensional W18O49 composite (PANI@W18O49), a noble metal-free photocatalyst, possesses excellent photocatalytic activity for aqueous nitrite removal with high N2 selectivity. The prepared sample was thoroughly identified via XRD, Raman, FTIR, SEM, TEM, UV–vis DRS and PL. The catalytic results demonstrated that over 80% N2 selectivity (initial concentration 1.0 mM) was achieved through the PANI@W18O49 without sacrificial agent under 300 W Xe lamp irradiation for 60 min. Such advantages were attributed to the built-in junction between n-type W18O49 and p-type PANI, offering suitable redox levels of electron-hole pairs for NO2? reaction. The modification of PANI also benefited the light harvesting ability and activated carriers migration, the calculated rate constant of PANI@W18O49 is about four times as high as that of W18O49. The current study not only prepared a promising photocatalyst, but also provides new insights into improving the photocatalytic activity and N2 selectivity for nitrite treatment.

    关键词: Nitrite,Polyaniline,Tungsten oxide,Full solar spectrum light driven,Photocatalysis

    更新于2025-09-23 15:23:52

  • Nanocrystal-engineered thin CuO film photocatalyst for visible-light-driven photocatalytic degradation of organic pollutant in aqueous solution

    摘要: We design a thin CuO film photocatalyst for visible-light-driven photocatalytic degradation of methylene blue (MB). Nanocrystal engineering of the photocatalyst is performed by sputtering with concurrent in-situ thermal treatment. The impacts of the in-situ thermal treatment temperature and sputtering conditions on the material properties of the thin CuO film photocatalyst are investigated in detail. Systematic characterization using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) indicates that deposition at elevated temperature and higher sputtering power significantly improves the surface structure and crystallinity of thin CuO film, which promotes charge transfer and ultimately results in better performance for MB photocatalytic degradation. The best-performing sample is the one sputtered at an elevated temperature of 300 °C and a sputtering power of 300 W. The photodegradation efficiency and physical durability of the samples were also analyzed after using for 5 cycles. The results indicate that in-situ thermal treatment and nanocrystal engineering of the thin CuO film significantly improve the physical durability.

    关键词: Thin CuO film photocatalyst,Visible-light-driven photocatalytic degradation,Nanocrystal engineering

    更新于2025-09-23 15:23:52

  • Construction of Strontium Titanate/Binary Metal Sulfide Heterojunction Photocatalysts for Enhanced Visible-Light-Driven Photocatalytic Activity

    摘要: A novel strontium titanate/binary metal sulfide (SrTiO3/SnCoS4) heterostructure was synthesized by a simple two-step hydrothermal method. The visible-light-driven photocatalytic performance of SrTiO3/SnCoS4 composites was evaluated in the degradation of methyl orange (MO) under visible light irradiation. The photocatalytic performance of SrTiO3/SnCoS4-5% is much higher than that of pure SrTiO3, SnCoS4, SrTiO3/SnS2 and SrTiO3/CoS2. The SrTiO3/SnCoS4 composite material with 5 wt.% of SnCoS4 showed the highest photocatalytic efficiency for MO degradation, and the degradation rate could reach 95% after 140 min irradiation time. The enhanced photocatalytic activity was ascribed to not only the improvement of visible light absorption efficiency, but also the construction of a heterostructure which make it possible to effectively separate photoexcited electrons and holes in the two-phase interface.

    关键词: visible-light-driven,SnCoS4,heterojunction,degradation,SrTiO3

    更新于2025-09-23 15:23:52