修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
研究主题
  • light-emitting diode
  • light distribution
  • optical lens
  • Monte Carlo raytracing
  • road lighting
  • optimization
  • Inorganic perovskite quantum dots
  • Stability
  • Light-emitting diodes
应用领域
  • Light Source and Lighting
  • Optoelectronic Information Materials and Devices
机构单位
  • Technical University of Gabrovo
649 条数据
?? 中文(中国)
  • Highly Efficient and Stable CsPbBr3 Perovskite Quantum Dots by Encapsulating in Dual-Shell Hollow Silica Spheres for WLEDs

    摘要: Poor stability of CsPbX3 (X = Cl, Br or I) perovskite quantum dots (QDs) has greatly hindered their practical photoelectric applications, and how to improve it still remains a critical challenge. Herein, we encapsulated the CsPbBr3 QDs into a dual-shell hollow silica (SiO2) spheres via a simple successive ionic layer adsorption and reaction (SILAR) method. The hierarchical dual-shell structures permit CsPbBr3 QDs to be anchored on the interior of the SiO2 spheres while keeping the outside surface undisturbed, which can protect CsPbBr3 QDs from direct exposure to the atmosphere. Due to the comprehensive protection of dual-shell hollow SiO2 spheres, the CsPbBr3/SiO2 nanospheres exhibit markedly enhanced stability against light and heat, with residual PL intensity of 89% after continuous exposure of 72 h to UV light and 65% at 100?C heat treatment, respectively. In addition, an optimal PLQY of 89% is obtained with suppressed nonradiative recombination. Finally, the fabricated white light-emitting diodes (LEDs) device by employing CsPbBr3/SiO2 green phosphors could achieve a wide color gamut covering up to 136% of the NTSC standard. This work provides a novel SiO2-based encapsulation approach to solve the intrinsic instability issues of CsPbBr3 QDs, which has a profound impact on their practical applications.

    关键词: photoluminescence quantum yield,CsPbBr3 quantum dots,dual-shell hollow silica spheres,stability,white light-emitting diodes

    更新于2025-09-23 15:21:01

  • Inverted Hybrid Light-Emitting Diodes Using Carbon Dots as Selective Contacts: The Effect of Surface Ligands

    摘要: We describe the use of carbon dots (C-Dots) as selective contacts for electronic holes in inverted hybrid light-emitting diodes. Moreover, we have studied the effect of the C-Dots’ amine-derivative surface ligands and their impact on the device performance. The different surface ligands affect not only the optical properties of the C-Dots but also the device turn-on voltage and the luminance parameters despite not forming part of the emissive layer. For instance, the C-Dots capped with the aromatic ring p-phenylenediamine show unfavorable effects, whereas the effect of nonaromatic capping ligands depends upon the length of their molecular backbone.

    关键词: capping ligands,amine-based ligands,light-emitting diodes,carbon dots,optoelectronic properties

    更新于2025-09-23 15:21:01

  • CsPbBr3 nanowire polarized light-emitting diodes through mechanical rubbing

    摘要: Anisotropic films composed of aligned CsPbBr3 nanowires (NWs) have been successfully fabricated using a mechanical rubbing method. The films with dense and uniform morphology show polarization photoluminescence (PL) behavior. Combining with an optimal device structure, a polarized light-emitting diode (LED) with a turn-on voltage as low as 6.5 V was achieved.

    关键词: CsPbBr3 nanowires,anisotropic films,mechanical rubbing,polarized light-emitting diode,photoluminescence

    更新于2025-09-23 15:21:01

  • Highly Stable Red Quantum Dot Light Emitting Diodes with Long T <sub/>95</sub> Operation Lifetime

    摘要: Quantum dot light-emitting diodes (QLEDs) with excellent performances such as external quantum efficiency (EQE) and lifetime have almost met the requirement of low brightness display. However, the short operation lifetime under high brightness limits the application of QLEDs in outdoor displays and lightings. Herein, we report a highly efficient, stable red QLED by using of lithium and magnesium co-doped as well as magnesium oxide shell-coated zinc oxide nanoparticle layer as electron transport layer (ETL). The optimized QLED has a high peak EQE of 20.6%, a low efficiency roll-off at high current, and a remarkably long lifetime T95 > 11000 h at 1000 cd m-2, which indicates the realization of the most stable red QLED up to now. The improvement in the long-term stability of the QLED is attributed to the use of co-doped and shell-coated zinc oxide ETL with reduced electron injection to improve the charge balance in device.

    关键词: EQE,QLEDs,electron transport layer,ETL,magnesium oxide shell-coated zinc oxide,Quantum dot light-emitting diodes,external quantum efficiency,lithium and magnesium co-doped,ZLMO@MO,lifetime

    更新于2025-09-23 15:21:01

  • Colloidal Synthesis of Ternary Copper Halides Nanocrystals for High-Efficiency Deep-Blue Light-Emitting Diodes with a Half-Lifetime Above 100 Hours

    摘要: Currently, the blue perovskite light-emitting diodes (PeLEDs) suffer from a compromise in lead-toxicity and poor operation stability, and most previous studies have struggled to meet the crucial blue NTSC standard. In this study, electrically-driven deep-blue LEDs (~445 nm) based on zero-dimensional (0D) Cs3Cu2I5 nanocrystals (NCs) were demonstrated with the color coordinates of (0.16, 0.07) and a high external quantum efficiency of ~1.12%, comparable with the best-performing blue LEDs based on lead-halide perovskites. Encouraged by the remarkable stability of Cs3Cu2I5 NCs against heat and environmental oxygen/moisture, the proposed device was operated in a continuous current mode for 170 h, producing a record half-lifetime of ~108 h. The device stability was further verified by an aggressive thermal cycling test (300?360?300 K) and a 35-day storage test. Together with the eco-friendly features and facile colloidal synthesis technique, the 0D Cs3Cu2I5 NCs can be therefore regarded as a promising candidate for deep-blue LEDs applications.

    关键词: self-trapped excitons,light-emitting diodes,stability,Cs3Cu2I5 nanocrystals,deep-blue

    更新于2025-09-23 15:21:01

  • Circularly Polarized Rooma??Temperature Phosphorescence and Encapsulation Engineering for MOFa??Based Fluorescent/Phosphorescent WLEDs

    摘要: Optical materials with circularly polarized luminescence and room temperature phosphorescence currently attract great attention owing to their unique optoelectronic properties. Herein, via the coordination-induced assembly strategy, a homochiral metal–organic framework (MOF) 1 with high stability and porosity is successfully synthesized by using the achiral triphenylamine-based molecule as the building block. Remarkably, MOF 1 shows circularly polarized luminescence and phosphorescence at room temperature simultaneously, also with excellent anisotropic optical properties. Furthermore, MOF 1 can serve as a nanocontainer to construct dye-encapsulated host–guest systems. Importantly, the multicolor emissions including white-light emission can be achieved. The corresponding color rendering index and correlated color temperature values of light emitting device are 73 and 5541 K, when using dye-loaded MOF 1?RhB 10 (CIE: 0.33, 0.33) as single-phase white light-emitting phosphor. This study first reports circularly polarized phosphorescence based on MOF without precious metals under ambient conditions, and also is first time for phosphorescent polarized materials with high porosity. These results will open up a new pathway to the design of porous chiroptical materials and white-light materials.

    关键词: circularly polarized luminescence,host–guest system,room temperature phosphorescence,white light emitting devices,metal–organic frameworks

    更新于2025-09-23 15:21:01

  • Evolution of pure hydrocarbon hosts: simpler structure, higher performance and universal application in RGB phosphorescent organic light-emitting diodes

    摘要: In the field of phosphorescent organic light-emitting diodes (PhOLEDs), designing high-efficiency universal host materials for red, green and blue (RGB) phosphors has been quite a challenge. To date, most of the high-efficiency universal hosts reported incorporate heteroatoms, which have a crucial role in the device performance. However, the introduction of different kinds of heterocycles increases the design complexity and cost of the target material and also creates potential instability in the device performance. In this work, we show that pure aromatic hydrocarbon hosts designed with the 9,90-spirobifluorene scaffold are high-efficiency and versatile hosts for PhOLEDs. With external quantum efficiencies of 27.3%, 26.0% and 27.1% for RGB PhOLEDs respectively, this work not only reports the first examples of high-efficiency pure hydrocarbon materials used as hosts in RGB PhOLEDs but also the highest performance reported to date for a universal host (including heteroatom-based hosts). This work shows that the PHC design strategy is promising for the future development of the OLED industry as a high-performance and low-cost option.

    关键词: RGB phosphors,PhOLEDs,external quantum efficiencies,phosphorescent organic light-emitting diodes,universal host materials,pure aromatic hydrocarbon hosts,9,90-spirobifluorene scaffold

    更新于2025-09-23 15:21:01

  • Counter-intuitive junction temperature behavior in AlGaN-based deep-ultraviolet light-emitting diodes

    摘要: The junction temperature, one of the major parameters that strongly affect the performance of light-emitting diodes (LEDs), increases during operation because of the power dissipated as heat within an LED device. Therefore, LED devices with poor characteristics are expected to have higher junction temperatures for the same driving conditions. In this study, an observation contrary to this expectation is presented: a deep-ultraviolet LED device with superior electrical characteristics shows a higher junction temperature at the same input electrical power than a device with poor characteristics. A simple equivalent circuit comprising a diode, a series resistor, and shunt components is employed to elucidate this counter-intuitive observation by considering the possible heat sources inside the LED device. It is found that the junction temperature is mainly dominated by the power dissipated at the diode instead of the other possible heat sources including the Joule heating effect of the resistive components.

    关键词: junction temperature,Joule heating,AlGaN-based deep-ultraviolet light-emitting diodes,power dissipation,equivalent circuit

    更新于2025-09-23 15:21:01

  • Rigid Oxygen-Bridged Boron-Based Blue Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode: Approach towards Satisfying High Efficiency and Long Lifetime Together

    摘要: Thermally activated delayed fluorescence (TADF) materials have emerged as an efficient emitter for achieving high efficiency of blue organic light emitting diodes (OLEDs). However, it is challenging to satisfy both high device efficiency and long operational lifetime together. Here, highly efficient and electrochemically stable blue TADF emitter, 5-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-10,15-diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3′,2′-c]carbazole (DBA-DI) is designed and synthesized for high efficiency and long lifetime OLED. This emitter exhibits high photoluminescence quantum yield of 95.3%, small single-triplet energy gap of 0.03 eV, short delayed exciton lifetime of 1.25 μs, and high bond dissociation energy (BDE). Also, phosphine oxide free high triplet energy host systems (single and mixed) and exciton blocking layer materials are analyzed using molecular and optical simulations to find an efficient host system with high BDE and suitable emission zone for high efficiency and stable OLEDs. The fabricated OLED with DBA-DI and high triplet host exhibited a maximum external quantum efficiency (EQE) of 28.1% with blue CIE color coordinates of (0.16, 0.39) and long operational lifetime (LT50) of 329 h at the initial luminance of 1000 cd m?2. Furthermore, the mixed host-based TADF device showed a slightly lower EQE of 26.4% and almost two times longer lifetime (LT50: 540 h) than the single host device.

    关键词: stable emitters,organic light emitting diodes,thermally activated delayed fluorescence,long lifetime

    更新于2025-09-23 15:21:01

  • Performance Improvement of Gate-Tunable Organic Light-Emitting Diodes with Electron-Transport and Hole-Blocking Layers

    摘要: The current density and luminance of gate-tunable organic light-emitting diodes (OLEDs) can be modulated by application of an external gate potential. However, existing gate-tunable OLEDs require further optimization to make them suitable for practical use. In this work, the rapid electron conduction of 4,4’-bis(N-carbazolyl)-1,1’biphenyl (CBP) molecules under low operating potential is demonstrated in polymer electrolyte-coated super yellow (SY) polymer light-emitting diodes (PLEDs). This behavior is attributed to the facile electrochemical n-doping of CBP by the polymer electrolyte infiltrated into the SY PLED through the porous aluminum cathode. The field-modulated conductivity of CBP upon applying an external gate potential to electrolyte-gated (EG) PLEDs is demonstrated. These phenomena lead to the improved performance of EG SY PLEDs with a CBP electron-transport layer and 1,3,5-tris[(3-pyridyl)-phen-3-yl]benzene) (TmpypB) hole-blocking layer between the porous aluminum cathode and SY emissive layer, including low turn-on voltage (1.5 V), low current density leakage (0.01 mA/cm2), low off luminance (<0.01 cd/m2), saturated on-current density (2 mA/cm2) and on-luminance (100 cd/m2), and largely suppressed hysteresis. These results pave the path for practical application of EG OLEDs in displays, especially near-to-eye displays.

    关键词: facile electrochemical doping,saturated on-current density and on-luminance,low off-current density leakage and off-luminance,suppressed hysteresis,near-to-eye displays,gate-tunable organic light-emitting diodes,grayscale displaying,porous electrodes

    更新于2025-09-23 15:21:01