- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Graphite lithiation and capacity fade monitoring of lithium ion batteries using optical fibers
摘要: Increasing the e?ciency and safety of battery management systems may require internal monitoring of lithium ion batteries. In this work, we present an analysis of the interaction between ?ber-optic evanescent wave sensors (FOEWS) and graphite particles within a lithium ion battery over multiple cycles. Through slow charging and long rest periods, the FOEWS signal has shown sensitivity to lithium concentration at the surface of graphite particles by demonstrating a response to the slow di?usion of lithium ions within graphite particles during rest periods (i.e. relaxation of the electrode). The slope of the FOEWS signal during a full charge is found to exhibit three distinct peaks that occur within lithiated graphite's stage transitions zones IV, III and II. Deviation from the observed three peak trend correlates with signi?cant battery capacity fade and thus indicate the sensors ability to detect capacity fade in real-time. During experiments, signi?cant deviations in the slope during charging occurred at about ~5% SOC and minor disturbances to the slope were observed at ~80% SOC, which supports limiting the depth of charge and discharge to avoid accelerated capacity fade. These results deepen our understanding of the FOEWS's interaction with lithium ion batteries and supports the development of algorithms that optimize the control and monitoring of graphite lithiation with the aim of achieving safer operation as well as maximizing capacity and battery life.
关键词: Optical ?ber sensor,Lithium ion battery,State of charge,Graphite,Capacity fade,Signal analysis
更新于2025-09-19 17:13:59
-
Economic and environmental assessment of reusing electric vehicle lithium-ion batteries for load leveling in the residential, industrial and photovoltaic power plants sectors
摘要: Reaching 70–80% of primary capacity, lithium-ion batteries must be replaced in electric vehicles. However, they could be reused in other applications such as energy storage stations. In this paper, an economic evaluation of reusage of lithium-ion packs for load leveling in the residential, industrial and photovoltaic power plants sectors have been investigated from subscriber and government aspects. Several repurposed electric vehicle battery packs have been taking into account for different tariffs and scenarios. It is found that utilization of battery can reduce electricity bill for residential consumers by 14.25% based on the current electricity market and 39.75% if the fine of the peak time consumption is tripled. However, the current subsidy rate in the electricity tariffs is the main barrier in terms of the payback period for homeowners. Moreover, it is found that decrease in the battery prices by 2035 as the only factor will not justify usage of repurposed battery in residential sector, furthermore, tariffs must also be regulated. Sensitivity analysis declared that a 20% reduction in the price of battery in residential sector, affects the internal rate of return by 164%. Meanwhile, increasing in the on-peak tariff can fluctuate it by 44%. Reusing electric vehicle batteries could be more profitable in the industrial sector due to the realistic tariff. In addition to the operation cost, government saving is analyzed from the initial cost aspect. Results illustrated that utilization of repurposed battery packs can reduce construction costs of new on-peak thermal power plants by 72.5% and 82% in the residential and industrial sectors, respectively. Finally, the effect of using repurposed lithium-ion battery packs on the emission rates of greenhouse gases and other air pollutants are surveyed. The reused batteries can be employed to achieve sustainable development.
关键词: Load leveling,Secondary use,Lithium-ion battery,Environmental analysis,Electric vehicle,Economic analysis
更新于2025-09-16 10:30:52
-
Improving the Reliability of Photovoltaic and Wind Power Storage Systems Using Least Squares Support Vector Machine Optimized by Improved Chicken Swarm Algorithm
摘要: In photovoltaic and wind power storage systems, the reliability of the battery directly affects the overall reliability of the energy storage system. Failed batteries can seriously affect the stable operation of energy storage systems. This paper aims to improve the reliability of the storage systems by accurately predicting battery life and identifying failing batteries in time. The current prediction models mainly use artificial neural networks, Gaussian process regression and hybrid models. Although these models can achieve high prediction accuracy, the computational cost is high due to model complexity. Least squares support vector machine (LSSVM) is a computationally efficient alternative. Hence, this study combines the improved chicken swarm optimization algorithm (ICSO) and LSSVM into a hybrid ICSO-LSSVM model for the reliability of photovoltaic and wind power storage systems. The following are the contributions of this work. First, the optimal penalty parameter and kernel width are determined. Second, the chicken swarm optimization algorithm (CSO) is improved by introducing chaotic search behavior in the hen and an adaptive learning factor in the chicks. The performance of the ICSO algorithm is shown to be better than CSO using standard test problems. Third, the prediction accuracy of the three models is compared. For NMC1 battery, the predicted relative error of ICSO-LSSVM is 0.94%; for NMC2 battery, the relative error of ICSO-LSSVM is 1%. These findings show that the proposed model is suitable for predicting the failure of batteries in energy storage systems, which can improve preventive and predictive maintenance of such systems.
关键词: chaotic search,least squares support vector machine,chicken swarm optimization algorithm,storage system,sustainable lithium-ion battery
更新于2025-09-16 10:30:52
-
Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage
摘要: Zero-dimensional graphene quantum dots have attractive properties but the synthesis of graphene quantum dots in a simple and scalable technique is tedious, which limits its utilization in different energy storage application. In this study, we present a simple and scalable approach to produce graphene quantum dots and heteroatom doped graphene quantum dots using chemical vapor deposition technique. Graphene quantum dots are prepared using alloy-based catalyst and methane as a carbon source. Boron-doped and nitrogen-doped graphene quantum dots are prepared at low temperature using graphite oxide without the use of dialysis bag. Here, the electrochemical lithium and sodium ion storage properties of doped and undoped graphene quantum dots are studied without being used as a supporting material for the performance enhancement as reported in previous reports. Boron doped GQD (B-GQD) exhibits a high specific capacity of 1097 mAh g?1 at a specific current of 50 mA g?1 for lithium and sodium ion batteries respectively. B-GQD exhibits high volumetric energy density of 537 Ah L?1 and 214 Ah L?1 with an average voltage of 0.43 V and 0.57 respectively for lithium ion and sodium ion batteries. Also, the cells observe a satisfactory cyclic performance for 500 cycles with good capacity retention. Detailed investigations show that the edge defects present in GQD and doped GQDs help to enhance the electrochemical storage performance of lithium and sodium ions.
关键词: Doped,Lithium ion battery,Quantum dots,Sodium ion battery,Anode material
更新于2025-09-12 10:27:22
-
Lithium Distribution in Structured Graphite Anodes Investigated by Laser-Induced Breakdown Spectroscopy
摘要: For the development of thick film graphite electrodes, a 3D battery concept is applied, which significantly improves lithium-ion diffusion kinetics, high-rate capability, and cell lifetime and reduces mechanical tensions. Our current research indicates that 3D architectures of anode materials can prevent cells from capacity fading at high C-rates and improve cell lifespan. For the further research and development of 3D battery concepts, it is important to scientifically understand the influence of laser-generated 3D anode architectures on lithium distribution during charging and discharging at elevated C-rates. Laser-induced breakdown spectroscopy (LIBS) is applied post-mortem for quantitatively studying the lithium concentration profiles within the entire structured and unstructured graphite electrodes. Space-resolved LIBS measurements revealed that less lithium-ion content could be detected in structured electrodes at delithiated state in comparison to unstructured electrodes. This result indicates that 3D architectures established on anode electrodes can accelerate the lithium-ion extraction process and reduce the formation of inactive materials during electrochemical cycling. Furthermore, LIBS measurements showed that at high C-rates, lithium-ion concentration is increased along the contour of laser-generated structures indicating enhanced lithium-ion diffusion kinetics for 3D anode materials. This result is correlated with significantly increased capacity retention. Moreover, the lithium-ion distribution profiles provide meaningful information about optimizing the electrode architecture with respect to film thickness, pitch distance, and battery usage scenario.
关键词: laser-induced breakdown spectroscopy,3D battery,lithium-ion battery,ultrafast laser ablation,graphite anode
更新于2025-09-12 10:27:22
-
A review on state of health estimation for lithium ion batteries in photovoltaic systems
摘要: Enhancing state of health (SOH) estimation accuracy and robustness for battery systems in photovoltaic (PV) systems is a feasible way to improve system performance and economics. Nevertheless, the SOH is not directly measurable and affected by a number of factors, therefore its estimation is challenging. Plenty of SOH estimation methods have been proposed for different applications, but little evaluation and discussion have been made for the SOH estimation for battery management systems in PV systems. In this paper, SOH estimation methods are categorised according to the signals that are used to extract the health indicator. Most methods are based on voltage characteristics while other signals such as temperature, ultrasound and force are also promising for SOH estimation. For each method, the basic theory, advantages and drawbacks are introduced and discussed. Then, a thorough comparison among the existing methods is conducted to provide readers with a comprehensive understanding of the development of the SOH estimation. Finally, key issues and suggestions on the SOH estimation are discussed to give novel insights to researchers and engineers.
关键词: State of health,Photovoltaic system,Battery management system,Lithium ion battery
更新于2025-09-11 14:15:04
-
Selective Laser Melting Titanium with nanonet topography inhibits osteoclast differentiation through MAPK signaling pathway
摘要: Penetrating into the inner surface of porous metal-oxide nanostructures to encapsulate the conductive layer is an efficient but challenging route to exploit high-performance lithium-ion battery electrodes. Furthermore, if the bonding force on the interface between the core and shell was enhanced, the structure and cyclic performance of the electrodes will be greatly improved. Here, vertically aligned interpenetrating encapsulation composite nanoframeworks were assembled from Cl?/SO3 2?-codoped poly(3,4-ethylenedioxythiophene) (PEDOT) that interpenetrated and coated on porous Fe2O3 nanoframeworks (PEDOT-IE-Fe2O3) via a one-step Fe3+-induced in situ growth strategy. Compared with conventional wrapped structures and methods, the special PEDOT-IE-Fe2O3 encapsulation structure has many advantages. First, the codoped PEDOT shell ensures a high conductive network in the composites (100.6 S cm?1) and provides interpenetrating fast ion/electron transport pathways on the inner and outer surface of a single composite unit. Additionally, the pores inside offer void space to buffer the volume expansion of the nanoscale frameworks in cycling processes. In particular, the formation of Fe?S bonds on the organic?inorganic interface (between PEDOT shell and Fe2O3 core) enhances the structural stability and further extends the cell cycle life. The PEDOT-IE-Fe2O3 was applied as lithium-ion battery anodes, which exhibit excellent lithium storage capability and cycling stability. The capacity was as high as 1096 mA h g?1 at 0.05 A g?1, excellent rate capability, and a long and stable cycle process with a capacity retention of 89% (791 mA h g?1) after 1000 cycles (2 A g?1). We demonstrate a novel interpenetrating encapsulation structure to highly enhance the electrochemical performance of metal-oxide nanostructures, especially the cycling stability, and provide new insights for designing electrochemical energy storage materials.
关键词: porous Fe2O3,lithium-ion battery,PEDOT,organic?inorganic interface,interpenetrating encapsulation
更新于2025-09-11 14:15:04
-
Preparation of multifunctional porous carbon electrodes through direct laser writing on a phenolic resin film
摘要: In this study, CuO@ZnO core-shell composite materials were successfully reported by chemical processes of depositing ZnO on the CuO surface. When evaluated as a lithium-ion battery anode, the CuO@ZnO composite shows a higher specific capacity of 300 mAh g-1 at 0.2 C after 100 cycles, especially CuO@ZnO-6.5% (the molar ratio of CuO to ZnSO4·7H2O of 1:0.065) composite material electrode still holds 459.5 mAh g-1 discharge capacity after 500 cycles. The test results show that the excellent coating on the CuO@ZnO composites improves the stability performance as electrodes for lithium-ion batteries due to the mechanism of ZnO. Therefore, the certain coverage of the CuO@ZnO composite electrode results in a valuable material for anodes in future batteries.
关键词: Lithium-ion battery,Anode material,CuO@ZnO composites
更新于2025-09-11 14:15:04
-
Dispatch optimization of concentrating solar power with utility-scale photovoltaics
摘要: Concentrating solar power (CSP) tower technologies capture thermal radiation from the sun utilizing a field of solar-tracking heliostats. When paired with inexpensive thermal energy storage (TES), CSP technologies can dispatch electricity during peak-market-priced hours, day or night. The cost of utility-scale photovoltaic (PV) systems has dropped significantly in the last decade, resulting in inexpensive energy production during daylight hours. The hybridization of PV and CSP with TES systems has the potential to provide continuous and stable energy production at a lower cost than a PV or CSP system alone. Hybrid systems are gaining popularity in international markets as a means to increase renewable energy portfolios across the world. Historically, CSP-PV hybrid systems have been evaluated using either monthly averages of hourly PV production or scheduling algorithms that neglect the time-of-production value of electricity in the market. To more accurately evaluate a CSP-PV-battery hybrid design, we develop a profit-maximizing mixed-integer linear program (H) that determines a dispatch schedule for the individual sub-systems with a sub-hourly time fidelity. We present the mathematical formulation of such a model and show that it is computationally expensive to solve. To improve model tractability and reduce solution times, we offer techniques that: (1) reduce the problem size, (2) tighten the linear programming relaxation of (H) via reformulation and the introduction of cuts, and (3) implement an optimization-based heuristic (that can yield initial feasible solutions for (H) and, at any rate, yields near-optimal solutions). Applying these solution techniques results in a 79% improvement in solve time, on average, for our 48-h instances of (H); corresponding solution times for an annual model run decrease by as much as 93%, where such a run consists of solving 365 instances of (H), retaining only the first 24 h’ worth of the solution, and sliding the time window forward 24 h. We present annual system metrics for two locations and two markets that inform design practices for hybrid systems and lay the groundwork for a more exhaustive policy analysis. A comparison of alternative hybrid systems to the CSP-only system demonstrates that hybrid models can almost double capacity factors while resulting in a 30% improvement related to various economic metrics.
关键词: Grid integration,CSP-PV hybrid systems,Mixed-integer linear programming (MILP),System analysis,Photovoltaics (PV),Concentrating solar power (CSP),Dispatch optimization,Lithium-ion battery
更新于2025-09-11 14:15:04
-
Short-Term Photovoltaic Generation Forecasting Based on LVQ-PSO-BP Neural Network and Markov Chain Method
摘要: The poor cycling stability is a tricky problem in the silicon-based lithium-ion batteries. Herein, we fabricate a three-dimension polyaniline/poly (acrylic acid)/phytic acid compound binder for the silicon anodes. In this binder, polyaniline-doped and gelated by phytic acid functions as a continuous electrically conductive network structure for the silicon anodes. Meanwhile, a high density of carboxyl groups provided by poly (acrylic acid) enhance the stability of the silicon electrodes by supplying strong binding ability with current collectors and silicon particles. Using this multifunctional binder in silicon anode, we succeed in manufacturing very long cycle life of larger than 1000 cycles at a current density of 4.2 A g?1.
关键词: Si anodes,Polymer binder,Cycle,Lithium-ion battery
更新于2025-09-11 14:15:04