- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Realization of GaN-based gain-guided blue laser diodes by helium ion implantation
摘要: Na4MnV(PO4)3 (denoted as NMVP) has drawn increasing attention owing to the three-dimensional framework and high theoretical capacity. Nevertheless, the inherent low electronic conductivity of NMVP impedes the scale-up commercial applications. In this work, the feasibility to achieve ultrahigh-rate capability and long lifespan by in situ embedding the intertwined carbon nanotube (CNT) matrix into the bulk of Na4MnV-(PO4)3@C composites through a facile wet-chemical approach is reported. The elaborately prepared Na4MnV(PO4)3@C@CNTs cathode delivers a discharge capacity of 109.9 mA h g?1 at C/5 with an impressive rate capability of 68.9 mA h g?1 at an ultrahigh current rate of 90 C as well as a fascinating cycling performance of 68.3% capacity retention at 40 C after 4000 cycles. The optimum design of the 3D well-interconnected NMVP permitting fast kinetics for transported Na+/e? is bene?cial to the excellent electrochemical performance, which is further studied by the galvanostatic intermittent impedance spectra measurements. The pseudocapacitance contributions are also investigated. The research demonstrates that the dual-nanocarbon synergistically modi?ed NMVP composite is expected to facilitate the commercialization of sodium-ion batteries.
关键词: Na4MnV(PO4)3,sodium-ion batteries,ultrahigh-rate capability,long lifespan,CNTs
更新于2025-09-11 14:15:04