修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Variable-Temperature Resonance Raman Studies to Probe Interchain Ordering for Semiconducting Conjugated Polymers with Different Chain Curvature

    摘要: The morphology and crystallinity of the polymers used to fabricate bulk heterojuction (BHJ) solar cells significantly influences the efficiency of the cells. We have used variable-temperature (VT) spectroscopy techniques, namely VT emission and VT resonance Raman spectroscopy (VT-RRS), to examine how the backbone linearity of a conducting polymer affects its electronic response to temperature and variations in solution behavior. We have studied two types of donor–acceptor polymers used in BHJ cells with differing backbone structures; they are poly-{5,6-bis(tetradecyloxy)-4-(thiophen-2-yl)benzo[c]-1,2,5-thiadiazole} (PTBT) which has a curved and poly-{5,6-bis(tetradecyloxy)-4-(thieno[3,2-b]-thiophen-2-yl)benzo[c]-1,2,5-thiadiazole} (PTTBT) which has a linear chain structure. Time-dependent density functional theory (TD-DFT) calculations and resonance Raman spectra (RRS) of PTTBT revealed the presence of three electronic transitions, with character that varies between p to p*, mixed p to p*/charge transfer and pure charge transfer in nature. Emission spectra of PTTBT showed spectral changes at 650 and 710 nm with varied temperature ((cid:2)10 to 60 8C). Variable-temperature RRS was measured in resonance with the lowest and highest energy electronic transitions. The changes were interpreted using two-dimensional correlation spectroscopy (2DCOS) analysis. PTTBT showed gradual shifts to lower wavenumbers of modes at around 1425, 1450 and 1500 cm(cid:2)1. For PTBT larger and more rapid spectral changes are observed at 1440 and 1460 cm(cid:2)1 consistent with greater variation in the electronic nature upon heating. Further study into the influence of polymer linearity on crystallinity and long range order was carried out using low-frequency Raman (LFR) to examine drop cast films under a variety of different conditions. LFR spectra showed that PTTBT has a band at 73 cm(cid:2)1. This is observed under a variety of film-forming conditions. PTBT does not show distinct low frequency modes, consistent with its low crystallinity.

    关键词: resonance Raman spectroscopy,low-frequency Raman,long range order,variable temperature,conducting polymers

    更新于2025-09-23 15:23:52

  • Relaxor Behavior in Ordered Lead Magnesium Niobate (PbMg <sub/>1/3</sub> Nb <sub/>2/3</sub> O <sub/>3</sub> ) Thin Films

    摘要: The local compositional heterogeneity associated with the short-range ordering of Mg and Nb in PbMg1/3Nb2/3O3 (PMN) is correlated with its characteristic relaxor ferroelectric behavior. Fully ordered PMN is not prepared as a bulk material. This work examines the relaxor behavior in PMN thin films grown at temperatures below 1073 K by artificially reducing the degree of disorder via synthesis of heterostructures with alternate layers of Pb(Mg2/3Nb1/3)O3 and PbNbO3, as suggested by the random-site model. 100 nm thick, phase-pure films are grown epitaxially on (111) SrTiO3 substrates using alternate target timed pulsed-laser deposition of Pb(Mg2/3Nb1/3)O3 and PbNbO3 targets with 20% excess Pb. Selected area electron diffraction confirms the emergence of (1/2, 1/2, 1/2) superlattice spots with randomly distributed ordered domains as large as ≈150 nm. These heterostructures exhibit a dielectric constant of 800, loss tangents of ≈0.03 and 2× remanent polarization of ≈11 μC cm?2 at room temperature. Polarization–electric field hysteresis loops, Rayleigh data, and optical second-harmonic generation measurements are consistent with the development of ferroelectric domains below 140 K. Temperature-dependent permittivity measurements demonstrate reduced frequency dispersion compared to short range ordered PMN films. This work suggests a continuum between normal and relaxor ferroelectric behavior in the engineered PMN thin films.

    关键词: random site model,relaxor,ferroelectricity,short- and long-range order,temperature-dependent Rayleigh analysis

    更新于2025-09-23 15:21:01

  • Slipped Structure of Covalent Organic Framework Facilitates Two‐Photon Adsorption for Improving Near‐Infrared Excited Fluorescence Imaging

    摘要: Fluorescent materials exhibiting the characteristics of strong two-photon absorption (TPA) are extensively used for nonlinear optics, bio-imaging and phototherapy. One practical approach to obtain fluorescent materials with high TPA performance is to polymerize molecular chromophores to form π-conjugated structure. This leads to the increase in TPA cross-section per chromophore, however, efforts to towards this direction was capped by the lack of long-range ordering in the structure and the strong π-π stacking between the chromophores. Here, we reported the rational design of benzothiadiazole-based covalent organic framework (COF) for promoting TPA performance and obtaining the efficient two-photon excited fluorescence. Structure characterizations and spectroscopic studies revealed that the enhancement in TPA performance was attributed to the donor-π-acceptor-π-donor (D-π-A-π-D) configuration of the chromophore, long-range order, and large π-conjugation domain of COF crystals. The structural slipping in TPA-COF not only attenuates the π-π stacking interaction between the layers, but more importantly, overcomes the aggregation-caused emission quenching of the chromophores for improving near-infrared two-photon excited fluorescence imaging.

    关键词: covalent organic framework,long-range order,two-photon absorption,slipped structure,fluorescence imaging

    更新于2025-09-11 14:15:04

  • Slipped Structure of Covalent Organic Framework Facilitates Two-Photon Adsorption for Improving Near-Infrared Excited Fluorescence Imaging

    摘要: Fluorescent materials exhibiting the characteristics of strong two-photon absorption (TPA) are extensively used for nonlinear optics, bio-imaging and phototherapy. One practical approach to obtain fluorescent materials with high TPA performance is to polymerize molecular chromophores to form π-conjugated structure. This leads to the increase in TPA cross-section per chromophore, however, efforts to towards this direction was capped by the lack of long-range ordering in the structure and the strong π-π stacking between the chromophores. Here, we reported the rational design of benzothiadiazole-based covalent organic framework (COF) for promoting TPA performance and obtaining the efficient two-photon excited fluorescence. Structure characterizations and spectroscopic studies revealed that the enhancement in TPA performance was attributed to the donor-π-acceptor-π-donor (D-π-A-π-D) configuration of the chromophore, long-range order, and large π-conjugation domain of COF crystals. The structural slipping in TPA-COF not only attenuates the π-π stacking interaction between the layers, but more importantly, overcomes the aggregation-caused emission quenching of the chromophores for improving near-infrared two-photon excited fluorescence imaging.

    关键词: covalent organic framework,long-range order,two-photon absorption,slipped structure,fluorescence imaging

    更新于2025-09-11 14:15:04

  • Reference Module in Materials Science and Materials Engineering || Photoelectron Diffraction

    摘要: Surface structural information can be derived from a great variety of methods, but most quantitative data are based on elastic scattering of X-rays, electrons, or ions by the near-surface atoms. While the best-known methods based on electron (and X-ray) scattering are conventional diffraction methods, reliant on long-range order, the technique of photoelectron diffraction is a local scattering technique that thus provides local structural information not dependent on long-range periodicity. In this short article the physical principles of photoelectron diffraction are described, highlighting at least two fundamentally distinct versions of the technique. The main areas of utilization of the method are illustrated.

    关键词: local scattering technique,long-range order,surface structural information,photoelectron diffraction,X-rays,electrons,elastic scattering,ions

    更新于2025-09-04 15:30:14