修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • The Photovoltaic Output Prediction Based on Variational Mode Decomposition and Maximum Relevance Minimum Redundancy

    摘要: Photovoltaic output is affected by solar irradiance, ambient temperature, instantaneous cloud cluster, etc., and the output sequence shows obvious intermittent and random features, which creates great difficulty for photovoltaic output prediction. Aiming at the problem of low predictability of photovoltaic power generation, a combined photovoltaic output prediction method based on variational mode decomposition (VMD), maximum relevance minimum redundancy (mRMR) and deep belief network (DBN) is proposed. The method uses VMD to decompose the photovoltaic output sequence into modal components of different characteristics, and determines the main characteristic factors of each modal component by mRMR, and the DBN model is used to fit the modal components and the corresponding characteristic factors, then the predicted results of each modal component is superimposed to obtain the predicted value of the photovoltaic output. By using the data of a certain photovoltaic power station in Yunnan for comparative experiments, it is found that the model proposed in this paper improves the prediction accuracy of photovoltaic output.

    关键词: mRMR,photovoltaic output prediction,feature selection,DBN,VMD

    更新于2025-09-11 14:15:04

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Exploratory Visual Analysis of Multispectral EO Images Based on DNN

    摘要: Exploratory visual analysis is often required to assist human operator to understand and interpret Earth Observation (EO) images. Optimal image representation offers cognitive support in discovering relevant facts about the scene with respect to a particular application. This is of crucial importance for training data sets selection in all Machine Learning tasks, particularly in the design of active learning tools for multispectral (MS) EO data. This paper proposes a deep neural network (DNN) based method to compress, learn and reveal the most significant information included in the spectral bands of EO data in support of relevant visualization for image content analysis. The advanced method uses a DNN to discover the most suggestive pseudo-color representation able to highlight the entire MS image content better than the particular 3 bands selection (R, G, B). We propose the use of information theory and the concept of mutual information to rank the spectral bands based on the amount of information contained, by applying the minimum-redundancy-maximum-relevance (mRMR) criterion on a the image so that we obtain the ranked bands. A DNN stacked autoencoder based paradigm is developed in order to extract and compress in three bands the overall information from the MS EO data. The developed method is demonstrated and validated for Sentinel 2 dataset.

    关键词: mRMR,information theory,mutual information,DNN,EO images

    更新于2025-09-10 09:29:36

  • [IEEE 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Honolulu, HI (2018.7.18-2018.7.21)] 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - An mRMR-SVM Approach for Opto-Fluidic Microorganism Classification

    摘要: The detection of microorganisms is important in numerous applications such as water quality monitoring, blood analysis, and food testing. The conventional detection methods are tedious and labour-intensive. Establish methods involve culturing, counting and identification of the pathogen by an experienced technician which typically can take several days. The use of opto-fluidic technology to capture microorganism images offers o route to reduce the overall assay time. However, the detection still requires a trained technician. This paper proposes an image processing method that can be used to classify microorganism images captured by an opto-fluidic set up in an automatic manner. The proposed algorithm incorporates some of the features used in other microorganism image detection methods and proposes two new features - Entropy of Histogram of Oriented Gradients (HOG) and the filtered intensities. In addition, we propose to apply the minimal-Redundancy-Maximal-Relevance (mRMR) criterion to select and rank these features. The probability and joint probability distribution functions of the mRMR are estimated using a Gaussian model and the Kernel Density Estimation model. The performance of the proposed method was validated using SVM and data collected from an experimental setup. The results show that our proposed method outperforms existing methods and is capable of achieving a classification accuracy up to 95.8%.

    关键词: mRMR,SVM,image processing,opto-fluidic technology,microorganism detection

    更新于2025-09-10 09:29:36