- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Efficiency and Quality Issues in the Production of Black Phosphorus by Mechanochemical Synthesis: A Multi-Technique Approach
摘要: Black phosphorus (BP) is a two-dimensional material potentially of great interest for applications in the fields of energy, sensing, and microelectronics. One of the most interesting methods to obtain BP is the conversion from red phosphorus (RP) by means of high-energy mechanochemical synthesis. To date, however, this synthesis process was not well characterized. In this work, starting from the mathematical model of energy transfer during the ball milling process, we investigate the effects on RP → BP conversion of three experimental parameters, the rotation speed, the milling time, and the weight ratio between the spheres and the milled material (BtPw ratio). The efficiency of the conversion process was verified by solid-state NMR, Raman spectroscopy, and X-ray diffraction. Whereas the first two parameters have a minor importance, the BtPw ratio plays a primary role in the RP → BP conversion. Yields approaching 100% can be obtained also with short milling times (15 min) and adequate rotation speed (e.g., 500 r.p.m.), provided that the BtPw ratio >40:1 is used. These results confirm the energy sustainability of the mechanochemical synthesis approach.
关键词: diffraction,solid-state NMR,anode,post-lithium ion batteries,Raman,mechanochemical synthesis
更新于2025-11-21 11:18:25
-
From Aggregates to Porous Three-Dimensional Scaffolds through a Mechanochemical Approach to Design Photosensitive Chitosan Derivatives
摘要: The crustacean processing industry produces large quantities of waste by-products (up to 70%). Such wastes could be used as raw materials for producing chitosan, a polysaccharide with a unique set of biochemical properties. However, the preparation methods and the long-term stability of chitosan-based products limit their application in biomedicine. In this study, different scale structures, such as aggregates, photo-crosslinked films, and 3D scaffolds based on mechanochemically-modified chitosan derivatives, were successfully formed. Dynamic light scattering revealed that aggregation of chitosan derivatives becomes more pronounced with an increase in the number of hydrophobic substituents. Although the results of the mechanical testing revealed that the plasticity of photo-crosslinked films was 5–8% higher than that for the initial chitosan films, their tensile strength remained unchanged. Different types of polymer scaffolds, such as flexible and porous ones, were developed by laser stereolithography. In vivo studies of the formed structures showed no dystrophic and necrobiotic changes, which proves their biocompatibility. Moreover, the wavelet analysis was used to show that the areas of chitosan film degradation were periodic. Comparing the results of the wavelet analysis and X-ray diffraction data, we have concluded that degradation occurs within less ordered amorphous regions in the polymer bulk.
关键词: laser stereolithography,mechanochemical synthesis,long-term stability,tissue reaction,chitosan,scaffold
更新于2025-09-23 15:22:29
-
Temperature Dependence of the Lattice Parameters of Cu2?–?xSe (0.03 ≤ x ≤ 0.23) Powders Fabricated by Mechanochemical Synthesis
摘要: The Cu2 – xSe (0.03 ≤ x ≤ 0.23) powders fabricated by mechanochemical synthesis have been studied by X-ray diffraction. The in situ study has been carried out for the temperature dependences of the lattice parameters, the structures, and the phase compositions of the powders in the temperature range 25–350°C. The powder compositions are shown to differ from the charge compositions and are shifted to lower copper concentrations. The estimation of peak half-widths of the cubic β phase indicates an increase in the structure imperfection after the phase transition from the α phase to the β phase of Cu2 – xSe at ~140°C. It is shown that the superpositions of the subtraction solutions (copper vacancies) and interstitials solutions (copper atoms in interstitial sites), whose proportion is changed as a function of temperature and the deviation from stoichiometry, are in the thermodynamic equilibrium in the copper selenide solid solution at room temperature. The change in the slope of the dependence of the lattice parameter of the powder Cu2 – xSe samples on the composition (0.03 ≤ x ≤ 0.23) in the temperature range 25–350°C enables the suggestion that interstitial copper atom concentration increases with temperature and deviation from stoichiometry.
关键词: phase transition,lattice parameters,mechanochemical synthesis,Cu2 – xSe,X-ray diffraction,thermodynamic equilibrium
更新于2025-09-23 15:21:01
-
Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a Mechanically Induced Self-Sustaining Reaction
摘要: The complete ZnSxSe1?x solid solution was successfully obtained by the mechanochemical process denoted as a mechanically induced self-sustaining reaction. Excellent control of the chemical stoichiometry of the solid solution was possible by adjusting the atomic ratio of the starting Zn/S/Se elemental mixture subjected to milling. A mixture of both wurtzite-2H (hexagonal) and zinc blende (cubic) structures was always obtained, although for a similar milling time the proportion of the zinc blende structure increased with the Se content in the solid solution. However, wurtzite was the major phase for S-rich compositions when milling was stopped just after ignition. It was demonstrated that milling induces the wurtzite-to-zinc blende phase transition. The 8H hexagonal polytype was also observed in samples subjected to long milling times. Variation of the lattice parameters for both structures with the x value in the solid solution presented an excellent linearity, confirming the validity of Vegard’s law. However, variation of the band-gap energy (Eg) with x was not perfectly linear, and a small bowing parameter of 0.34 was obtained. It was possible to tune the Eg value between those of the end members of the solid solution in a continuous manner by adjusting the stoichiometry of the solid solution. The morphology and crystalline domain size can also be controlled by adjusting, in this case, the postignition milling time of the mechanochemical process.
关键词: band gap tuning,phase transformation,Vegard's law,ZnS/ZnSe solid solution,mechanically induced self-sustaining reaction,mechanochemical synthesis
更新于2025-09-19 17:15:36
-
The mechanochemical synthesis of PbTe nanostructures: following the Ostwald ripening effect during milling
摘要: A fundamental understanding of the Ostwald ripening effect (ORE) during the mechanochemical synthesis of PbTe nanostructures is presented. The ripening process involves the coarsening of larger particles from those of smaller size; this phenomenon was systematically evaluated at different stages of milling by microscopy analyses (AFM, TEM, STEM and HRTEM). At the early stage of milling, smaller particles and quantum dots are eventually dissolved to lower the total energy associated with their surfaces. The ripening process – during milling – involves short-range mass transfer among particles. HRTEM analyses allowed us to identify that coarsening occurs by thermo-mechanically activated cooperative mechanisms. The detachment of the atoms from smaller particles to form bigger ones plays a major role in the particle coarsening. It was found that the coarsening process was not limited to crystalline nanostructures; so grain boundaries, edge dislocations and boundaries among crystalline and amorphous phases also play an important role to determine how species migration contributes to generate coarse particles. Those serve as sites for inducing coarsening in an equivalent way as surfaces do. Secondary ion mass spectrometry and elemental chemical mapping (EDX-STEM) revealed that both the purity and the chemical homogeneity of the PbTe nanostructures are prominent features of this material. Additionally, a direct band gap enhancement (780 nm) compared to bulk PbTe (3859 nm) was detected. It occurred due to the quantum confinement effect, lattice imperfections and even surface properties of the nanostructures. It is important to point out that the whole optical behaviour of the PbTe nanostructures was dependent upon the embedded nanoparticles and quantum dots in the clusters and coarse particles ranging from 15 nm to 35 nm.
关键词: PbTe nanostructures,microscopy analyses,quantum confinement effect,mechanochemical synthesis,Ostwald ripening effect,high-energy milling
更新于2025-09-19 17:15:36
-
Hollow/porous-walled SnO2 via nanoscale Kirkendall diffusion with irregular particles
摘要: Hollow/porous structured SnO2 nanoparticles were synthesized by simple oxidation of dense metal chalcogenide precursors via nanoscale Kirkendall diffusion effect. First, tin chalcogenide (SnS, SnSe) nanoparticles were synthesized by mechanochemical method, which is considered a facile, scalable, and eco-friendly process. Hollow/porous-walled SnO2 nanoparticles were synthesized by simple oxidation of the prepared Sn chalcogenide precursors, for which the transformation mechanism was verified in detail. Nanoscale Kirkendall diffusion process was thoroughly investigated by morphological, crystallographic, and elemental analyses performed at various oxidation temperatures and times. To examine the morphological effect of hollow/porous-walled SnO2 nanoparticles on the electrochemical performance, the synthesized nanoparticles were applied as anode material in a lithium-ion battery. Anode material showed highly improved electrochemical properties compared to its dense counterpart, with 83% capacity retention from the second cycle at the 400th cycle and capacity of 302 mA h g-1 at a high current density of 30 A g-1.
关键词: chalcogenide,hollow structure,mechanochemical synthesis,porous particles,Kirkendall effect
更新于2025-09-16 10:30:52
-
Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill
摘要: Chalcogenide nanostructured semiconductor, copper sulfide (CuS) was prepared from copper and sulfur powders in stoichiometric ratio by a simple, fast, and convenient one-step mechanochemical synthesis after 40 min of milling in an industrial eccentric vibratory mill. The kinetics of the mechanochemical synthesis and the influence of the physical properties of two Cu powder precursor types on the kinetics were studied. The crystal structure, physical properties, and morphology of the product were characterized by X-ray diffraction (XRD), the specific surface area measurements, particle size distribution and scanning electron microscopy. The XRD analysis confirmed the hexagonal crystal structure of the product-CuS (covellite) with the average size of the crystallites 11 nm. The scanning electron microscopy analysis has revealed that the agglomerated grains have a plate-like structure composed of CuS nanoparticles. The thermal analysis was performed to investigate the thermal stability of the mechanochemically synthesized CuS. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. The determined optical band gap energy 1.80 eV responds to the value of the bulk CuS, because of agglomerated nanoparticles. In addition, a mechanism of CuS mechanochemical reaction was proposed, and the verification of CuS commercial production was performed.
关键词: thermal analysis,industrial mechanochemical synthesis,copper sulfide,optical properties
更新于2025-09-09 09:28:46
-
Large Scale Synthesis of ZnO Nanostructures of Different Morphologies through Solvent-free Mechanochemical Synthesis and their Application in Photocatalytic Dye Degradation
摘要: Well crystalline, near-stoichiometric zinc oxide nanostructures of different morphologies are fabricated in large scale, utilizing a simple, cost effective mechanochemical synthesis in absence of solvent. Effects of ionic and nonionic surfactants along with the concentration of hydrolyzing agent on the evolution of nanostructure morphology have been studied. It has been observed that while a cationic surfactant such as Cetyltrimethylammonium Bromide (CTAB) favors the nanostructures to growth along their polar c-axis, a nonionic surfactant such as Polyvinylpyrrolidone (PVP) reduces their preferred c-axis growth. Increase of hydrolyzing agent in the reaction mixture enhances the growth rate of the nanostructures. The nanostructures have been tested for photodegradation of anionic dye molecules such as Methylene Blue (MB). All the nanostructures manifest high photocatalytic performance. Apart from morphology, the specific surface area, crystal plane orientation and the concentration of basic sites at surface are seen to contribute significantly to the photocatalytic performance of the zinc oxide nanostructures.
关键词: Mechanochemical Synthesis,Photocatalysis,Nanostructures,ZnO,Dye Degradation
更新于2025-09-04 15:30:14
-
Combined mechanochemical/thermal annealing approach for the synthesis of Co9Se8 with potential optical properties
摘要: Synthesis of Co9Se8 phase from metallic cobalt and selenium powders by one-pot mechanochemical synthesis in a planetary ball mill and subsequent thermal treatment in argon atmosphere is reported. Crystal structure and morphology of the products were characterized by X-ray diffraction, specific surface area measurements, and transmission electron microscopy. Our study revealed that only mixture with excess of Co resulted in the formation of higher fraction of the Co9Se8 phase. While milling of Co and Se in 13.5:8 ratio resulted in the synthesis of nanocrystalline hexagonal CoSe (freboldite) and only around 13?wt.% of the targeted Co9Se8 phase, additional isothermal treatment at 450?°C increased yield of the Co9Se8 phase to more than 70%. Optical properties of the product with the highest Co9Se8 fraction showed broad absorption in whole UV–Vis optical region and band-gap energy of 1.93?eV, blue-shifted relative to the bulk Co9Se8. Both UV–Vis and photoluminescence spectra indicated quantum size effect of the finest nanocrystals in Co9Se8 product. The new combined approach represents a simple, fast, and easy up-scalable route for the synthesis of Co9Se8.
关键词: thermal annealing,optical properties,mechanochemical synthesis,Co9Se8,quantum size effect
更新于2025-09-04 15:30:14