- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effect of surface modification and laser repetition rate on growth, structural, electronic and optical properties of GaN nanorods on flexible Ti metal foil
摘要: The effect of flexible Ti metal foil surface modification and laser repetition rate in laser molecular beam epitaxy growth process on the evolution of GaN nanorods and their structural, electronic and optical properties has been investigated. The GaN nanostructures were grown on bare- and pre-nitridated Ti foil substrates at 700 °C for different laser repetition rates (10–30 Hz). It is found that the low repetition rate (10 Hz) promotes sparse growth of three-dimensional inverted-cone like GaN nanostructures on pre-nitridated Ti surface whereas the entire Ti foil substrate is nearly covered with film-like GaN consisting of large-sized grains for 30 Hz growth. In case of the GaN growth at 20 Hz, uniformly-aligned, dense (~8 × 109 cm?2) GaN nanorods are successfully grown on pre-nitridated Ti foil whereas sparse vertical GaN nanorods have been obtained on bare Ti foil under similar growth conditions for both 20 and 30 Hz. X-ray photoemission spectroscopy (XPS) has been utilized to elucidate the electronic structure of GaN nanorods grown under various experimental conditions on Ti foil. It confirms Ga–N bonding in the grown structures, and the calculated chemical composition turns out to be Ga rich for the GaN nanorods grown on pre-nitridated Ti foil. For bare Ti substrates, a preferred reaction between Ti and N is noticed as compared to Ga and N leading to sparse growth of GaN nanorods. Hence, the nitridation of Ti foil is a prerequisite to achieve the growth of dense and aligned GaN nanorod arrays. The X-ray diffraction, high resolution transmission electron microscopy and Raman studies revealed the c-axis growth of wurtzite GaN nanorods on Ti metal foil with good crystallinity and structural quality. The photoluminescence spectroscopy showed that the dense GaN nanorod possesses a near band edge emission at 3.42 eV with a full width at half maximum of 98 meV at room temperature. The density-controlled growth of GaN nanorods on a flexible substrate with high structural and optical quality holds promise for potential applications in futuristic flexible GaN based optoelectronics and sensor devices.
关键词: Ti metal foil,laser molecular beam epitaxy,optical properties,GaN nanorods,structural properties,surface modification,electronic properties,laser repetition rate
更新于2025-09-23 15:19:57
-
Metal-Reduced WO3a??x Electrodes with Tunable Plasmonic Resonance for Enhanced Photoelectrochemical Water Splitting
摘要: Photoelectrochemical (PEC) water splitting is one of the most promising green technologies for producing renewable clean hydrogen energy. Developing plasmonic semiconductors with tunable plasmonic resonance to visible light has drawn increasing attention in view of utilizing abundant low-energy photons for solar-to-chemical conversion. Herein, we demonstrate for the first time that the WO3 electrode can be partly reduced by various metal foils in acid solution, showing strong localized surface plasmon resonance (LSPR) in the visible-to-near-infrared (Vis–NIR) region. The LSPR can be precisely tuned by using metal foils with different standard electrode potentials for different reaction times, and the LSPR peak position strongly depends on the concentration of W5+ in the WO3?x electrodes. A photocurrent density of 0.79 mA·cm?2 at 1.23 VRHE, which is twice that of pristine one, is obtained over an optimally reduced WO3?x electrode. The enhanced PEC water splitting performance is ascribed to the increased light absorption, conductivity and charge carrier concentration.
关键词: photoelectrochemical water splitting,semiconductor,plasmonic resonance,metal foil,tungsten oxide
更新于2025-09-23 15:19:57
-
Terahertz radiation enhanced by target ablation during the interaction of high intensity laser pulse and micron-thickness metal foil
摘要: When an ultra-intense relativistic laser is irradiated on a solid target, terahertz (THz) pulses can be generated by coherent transition radiation when the laser-driven electron beams cross the rear surface of the target. The radiation energy depends on the number and energy of the electrons. By introducing a milli-joule picosecond ablation laser pulse, an underdense preplasma with a scale length of micrometers is generated at the front surface of the target. Electron beams with more charge and higher energy can be produced during the interaction between the following main laser pulse and the preplasma, which enhance the THz radiation and affect the radiation angle. Two dimensional particle-in-cell simulations demonstrate the improvement of electron beams and a nearly tenfold enhancement of THz radiation energy is observed.
关键词: high intensity laser pulse,particle-in-cell simulations,coherent transition radiation,terahertz radiation,target ablation,micron-thickness metal foil
更新于2025-09-19 17:13:59