修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Controllable synthesis of transition metal ion-doped CeO2 micro/nanostructures for improving photocatalytic performance

    摘要: Ceria (CeO2) micro/nanostructures with various sizes and shapes were successfully synthesized by doping with a series of transition metal ions without any surfactant or template. The crystal structure, morphology, and photocatalytic performance of CeO2 and Co-, Zr-, Cu-doped CeO2 were characterized. The lattice parameters, which indicate the crystal structure distortion and change of Ce4+, were changed by incorporating a transition metal into the CeO2. Doping with transition metal ion could broaden the absorption range from ultraviolet to visible region and enhance the concentration of oxygen vacancies, which exhibited a significantly lower optical band than pure CeO2. The photocatalytic studies revealed that CeO2 with a spate of oxygen vacancies displayed a higher photocatalytic activity than pure CeO2 in degrading the organic pollutant rhodamine B (RhB). Furthermore, the O2? and ?OH radicals formed during photocatalysis process were revealed by means of nitrotetrazolium blue chloride (NBT) reduction method and a terephthalic acid (TA) fluorescence probe method, respectively, which discovers that radicals were crucial for the degradation of RhB. The H2-TPR confirmed that a small amount of transition metal ions significantly affected the oxidation state of the surface cations and oxygen vacancies. This study clearly reveals the effects of different transition metal ion dopants on the morphologies and photocatalytic performance of transition metal ion-doped CeO2 micro/nanostructures.

    关键词: oxygen vacancy,CeO2,metal ion-doping,morphology,photocatalytic activity

    更新于2025-09-23 15:19:57

  • Synergistic Improvements in Efficiency and Stability of 2D Perovskite Solar Cells with Metal Ion Doping

    摘要: 2D perovskites hold a great prospective to create highly efficient and stable solar cell devices. In order to explore their full potential, every component of 2D perovskite solar cells (PSCs) has to be carefully designed and engineered. Herein, the metal ion doping strategy is taken to optimize both the hole transport layers (HTLs) and the light absorbing layers of the BA2MA3Pb4I13 (BA = butylamine; MA = methylammonium) based 2D PSC devices. The hole extraction and transport abilities are significantly enhanced by Cu ion doping in the nickel oxide layers, while the optoelectronic properties of the BA2MA3Pb4I13 layers are effectively improved with Cs ion doping. The synergistic incorporations of Cu and Cs ions have boosted the device power conversion efficiency to 13.92%, the highest for 2D PSCs based on inorganic HTLs. In addition, the inorganic nature of the Cu doped nickel oxide film and the high quality of the Cs doped 2D perovskite film also endow the PSC device with extraordinary humidity and thermal stabilities.

    关键词: 2D perovskites,metal ion doping,stability,solar cells

    更新于2025-09-12 10:27:22