- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Two-dimensional (PEA) <sub/>2</sub> PbBr <sub/>4</sub> perovskite single crystals for a high performance UV-detector
摘要: Two-dimensional (2D) metallic transition metal dichalcogenides (MTMDCs), the complement of 2D semiconducting TMDCs, have attracted extensive attentions in recent years because of their versatile properties such as superconductivity, charge density wave, and magnetism. To promote the investigations of their fantastic properties and broad applications, the preparation of large-area, high-quality, and thickness-tunable 2D MTMDCs has become a very urgent topic and great efforts have been made. This topical review therefore focuses on the introduction of the recent achievements for the controllable syntheses of 2D MTMDCs (VS2, VSe2, TaS2, TaSe2, NbS2, NbSe2, etc.). To begin with, some earlier developed routes such as chemical vapor transport, mechanical/chemical exfoliation, as well as molecular beam epitaxy methods are briefly introduced. Secondly, the scalable chemical vapor deposition methods involved with two sorts of metal-based feedstocks, including transition metal chlorides and transition metal oxidations mixed with alkali halides, are discussed separately. Finally, challenges for the syntheses of high-quality 2D MTMDCs are discussed and the future research directions in the related fields are proposed.
关键词: metallic transition metal dichalcogenides,synthesis,chemical vapor deposition,two dimensional
更新于2025-09-19 17:15:36
-
Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides
摘要: Two-dimensional (2D) metallic transition metal dichalcogenides (MTMDCs), the complement of 2D semiconducting TMDCs, have attracted extensive attentions in recent years because of their versatile properties such as superconductivity, charge density wave, and magnetism. To promote the investigations of their fantastic properties and broad applications, the preparation of large-area, high-quality, and thickness-tunable 2D MTMDCs has become a very urgent topic and great efforts have been made. This topical review therefore focuses on the introduction of the recent achievements for the controllable syntheses of 2D MTMDCs (VS2, VSe2, TaS2, TaSe2, NbS2, NbSe2, etc.). To begin with, some earlier developed routes such as chemical vapor transport, mechanical/chemical exfoliation, as well as molecular beam epitaxy methods are briefly introduced. Secondly, the scalable chemical vapor deposition methods involved with two sorts of metal-based feedstocks, including transition metal chlorides and transition metal oxidations mixed with alkali halides, are discussed separately. Finally, challenges for the syntheses of high-quality 2D MTMDCs are discussed and the future research directions in the related fields are proposed.
关键词: chemical vapor deposition,metallic transition metal dichalcogenides,synthesis,two dimensional
更新于2025-09-11 14:15:04
-
Chemical Vapor Deposition Growth of Single Crystalline CoTe <sub/>2</sub> Nanosheets with Tunable Thickness and Electronic Properties
摘要: Two-dimensional (2D) metallic transition metal dichalcogenides (MTMDs) have recently drawn increasing interest for fundamental studies and potential applications in catalysis, charge density wave (CDW), interconnections, spin-torque devices, as well superconductors. Despite some initial efforts, the thickness-tunable synthesis of atomically thin MTMDs remains a considerable challenge. Here we report controlled synthesis of 2D cobalt telluride (CoTe2) nanosheets with tunable thickness using an atmospheric pressure chemical vapor deposition (APCVD) approach and investigate their thickness-dependent electronic properties. The resulting nanosheets show a well-faceted hexagonal or triangular geometry with a lateral dimension up to ~200 μm. Systematic studies of growth at varying growth temperatures or flow rates demonstrate that nanosheets thickness is readily tunable from over 30 nm down to 3.1 nm. X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution scanning transmission electron microscope (STEM) studies reveal the obtained CoTe2 nanosheets are high-quality single crystals in the hexagonal 1T phase. Electrical transport studies show the 2D CoTe2 nanosheets display excellent electrical conductivities up to 4.0 × 105 S m?1 and very high breakdown current densities up to 2.1 × 107 A/cm2, both with strong thickness tunability.
关键词: Two-dimensional (2D),cobalt telluride (CoTe2),electronic properties,chemical vapor deposition (CVD),metallic transition metal dichalcogenides (MTMDs)
更新于2025-09-04 15:30:14