修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Design of high gain, broadband resonant cavity antenna with meta-material inspired superstrate

    摘要: A broadband high gain planar meta-material based Resonant Cavity Antenna (RCA) operating at C-band is proposed. The RCA is modeled using simple ray tracing method. The unit cell metamaterial consists of Artificial Magnetic Conductor (AMC) and square patch laminated on either side of a lossy commercial dielectric material of dielectric constant 4.4 & thickness 1.6mm, is used as the superstrate to design RCA. Square patch is the capacitive type and that AMC as inductive. Effects of the reflection phase of the substrate decide the high gain of the antenna. A cylindrical dielectric resonator antenna (CDRA) is embedded into the cavity as a feed. The proposed antenna achieves 22.4dBi gain with 2 layers of 4x4 array superstrate with a bandwidth of around 5.1GHz. The full-wave analysis is performed to extract the impedance matching, radiation pattern & gain of the composite RCA. A prototype antenna is fabricated and tested for verification of experimental results which was found to be well correlated. It also shows that the proposed RCA achieves -10dB impedance bandwidth of 72.72% ranging from 4 to 9.1GHz with a high gain around 22.4dBi.

    关键词: Cylindrical Dielectric Resonator Antenna (CDRA),Metamaterials (MTM),Resonant Cavity Antenna (RCA)

    更新于2025-09-23 15:23:52

  • Microstrip Line Impedance Matching Using ENZ Metamaterials, Design and Application

    摘要: The idea of this paper is to extend the tunneling effect of epsilon-near-zero (ENZ) narrow channel for matching two microstrip lines with different impedance characteristics. The main advantage of this method is the possibility to design a channel with subwavelength electrical size and obtain similar matching condition when compared with a conventional λ/4-transformer. The bandwidth of the structure is directly related to the bandwidth of the ENZ-metamaterials (MTM). The suggested matching circuit is comprised of a metallic wall and an ENZ narrow channel. To realize the ENZ channel, a rectangular waveguide which operates in TE10 mode is designed and implemented using a substrate integrated waveguide (SIW) technology. A set of vias are also needed for emulating the metallic wall to reduce the ENZ channel cross section. The proposed structure for different impedance values of 50?, 100?, and 150? was designed, simulated, fabricated, and tested. Moreover, as an important application of a matching network, a microstrip patch antenna has been matched over the desired frequency band. Simulation results based on CST microwave studio have good agreement with measurements. It is shown that the bandwidth of the circuit is 8%–15%.

    关键词: impedance matching,metamaterials (MTM),Epsilon-near-zero (ENZ),microstrip line,tunneling

    更新于2025-09-23 15:22:29