修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

10 条数据
?? 中文(中国)
  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Evaluation of the Vegetation Optical Depth Index on Monitoring Fire Risk in the Mediterranean Region

    摘要: Monitoring live fuel moisture content (LFMC) in Mediterranean area is of great importance for fire risk assessment. LFMC has extensively been estimated based on optical remote sensing data. But the latter can be affected by atmospheric effects. As a complementary data source, microwave data can be used as they are relatively insensitive to atmospheric effects. Yet further evaluations are needed to investigate the potential of microwave observations to monitor LFMC. In this study, we assess the capability of long-term microwave vegetation optical depth (VOD) to capture the temporal variability of in situ measured LFMC in 14 Mediterranean shrub species in southern France during 1996-2014. Microwave-derived VOD at X band (VODX-15) displayed a high sensitivity to LFMC with correlation coefficients of 0.56. Similar evaluations were made using four optical indices computed from the Moderate Resolution Imaging Spectrometer (MODIS) data including normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), visible atmospheric resistant index (VARI), normalized difference water index (NDWI). The comparisons showed that VARI performs better than VODX-15 and other optical indices with highest median of correlation coefficients of 0.65. Overall, this study shows that passive microwave-derived VOD, are efficient proxies for LFMC of Mediterranean shrub species and could be used along with optical indices to evaluate fire risks in the Mediterranean region.

    关键词: vegetation optical depth,fire risk,microwave remote sensing,live fuel moisture content

    更新于2025-09-23 15:21:21

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Soil Moisture Retrieval by Combining Using Active and Passive Microwave Data

    摘要: Active and passive microwave remote sensing have their particular characteristics. Active microwave is more sensitive to vegetation cover and surface soil roughness, while passive microwave is more sensitive to the surface soil moisture. A new retrieval algorithm has been proposed by using Aquarius and SMAP satellites’ active and passive microwave observations to retrieve soil moisture products in different spatial scales. The retrieval results of soil moisture have been verified with the ground observations of soil moisture and temperature measurement (SMTM) stations in Naqu, China. The advantages and disadvantages of the algorithm have also been evaluated to analyze the practical value of the new soil moisture retrieval algorithm.

    关键词: soil moisture retrieval algorithm,passive microwave,soil moisture,active microwave,active and passive microwave remote sensing,Aquarius satellite

    更新于2025-09-23 15:21:01

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Light Bullets in Passively Mode-Locked Lasers: Dynamics and Instabilities

    摘要: Vertically and horizontally inhomogeneous distributions of hydrometeors are often observed in precipitating clouds. The 3-D characteristics can then cause errors in the passive microwave rainfall measurements with the current off-nadir viewing sensors’ specific specifications. This result is due to the fact that the same surface rainfall could be associated with different amounts of hydrometeors depending on the sensors’ viewing paths. In this paper, we confirmed that the plane-parallel radiative treatment to the atmosphere leaves a notable deficiency in the microwave radiometric signatures, particularly at the higher frequency channels for different viewing directions when largely inhomogeneous precipitating clouds are accompanied by significant ice particles. The mean differences between the two brightness temperature fields with two opposite azimuthal viewing directions were up to approximately 40 ?K for the vertically polarized channel at 85.5 GHz in the case study. The impact of the 3-D effect on the passive microwave rainfall estimations was also examined by synthetic retrievals employing a Bayesian methodology. The results showed that the uncertainty in the rainfall estimations due to the 3-D effect depended on the viewing directions considered in the a priori information. It was also found that taking more viewing angles or the azimuth angles in the a priori information into consideration tended to moderate the retrieval difference that resulted from the different viewing directions. In addition, the retrieval uncertainty related to the 3-D effect appeared to be more significant for heavy rainfall cases with large amounts of ice particles, as expected.

    关键词: 3-D radiative transfer,precipitation,3-D effect,Passive microwave remote sensing

    更新于2025-09-23 15:21:01

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - High Resolution Soil Moisture Product Based on Smap Active-Passive Approach Using Copernicus Sentinel 1 Data

    摘要: SMAP project released a new enhanced high-resolution (3km) soil moisture active-passive product. This product is obtained by combining the SMAP radiometer data and the Sentinel-1A and -1B Synthetic Aperture Radar (SAR) data. The approach used for this product draws heavily from the heritage SMAP active-passive algorithm. Modifications in the SMAP active-passive algorithm are done to accommodate the Copernicus Program’s Sentinel-1A and -1B multi-angular C-band SAR data. Assessment of the SMAP and Sentinel active-passive algorithm has been conducted and results show feasibility of estimating surface soil moisture at high-resolution in regions with low vegetation density (~< 3 kg m-2). The beta version of this product is released to public on Nov 1st, 2017. This high resolution (3 km) soil moisture product is useful for agriculture, flood mapping, watershed/rangeland management, and ecological/hydrological applications.

    关键词: active-passive algorithm,SMAP,Sentinel-1A and -1B,soil moisture,microwave remote sensing

    更新于2025-09-23 15:21:01

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Estimation of 1-Km All-Weather Land Surface Temperature Over the Tibetan Plateau

    摘要: Land surface temperature (LST) immensely affects the energy balance and water cycle on the earth’s surface. Merging thermal infrared (TIR) and passive microwave (MW) remote sensing provides the possibility to obtain all-weather LST with moderate resolutions. However, due to difficulties in downscaling MW LST, current methods merging TIR LST and MW LST into such an all-weather LST are limited over large areas with very complicated land surfaces (e.g. the Tibetan Plateau). By fully considering the influence of the topography on estimation of merged LSTs, this study revises the recently-developed physical method for generating the 1-km all-weather LST and applies it over the Tibetan Plateau to merge MODIS (1 km) and AMSR2 (10 km) observations. Results show that the merged LST has accuracy of 0.99 K-3.22 K when validated against in-situ LSTs from five ground stations with various land cover types. This study would be beneficial for continuously monitoring LST and improving spatio-temporal resolutions for associated land surface process studies requiring high-quality all-weather LST over large scales.

    关键词: MODIS,Spatial correlations,AMSR2,Land surface temperature (LST),Passive microwave remote sensing

    更新于2025-09-23 15:21:01

  • [IEEE 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - Rome, Italy (2019.6.17-2019.6.20)] 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - Micro-transfer-printing of InP Photonic Devices to Silicon Photonics

    摘要: Vertically and horizontally inhomogeneous distributions of hydrometeors are often observed in precipitating clouds. The 3-D characteristics can then cause errors in the passive microwave rainfall measurements with the current off-nadir viewing sensors’ speci?cations. This result is due to the fact that the same surface rainfall could be associated with different amounts of hydrometeors depending on the sensors’ viewing paths. In this paper, we con?rmed that the plane-parallel radiative treatment to the atmosphere leaves a notable de?ciency in the microwave radiometric signatures, particularly at the higher frequency channels for different viewing directions when largely inhomogeneous precipitating clouds are accompanied by signi?cant ice particles. The mean differences between the two brightness temperature ?elds with two opposite azimuthal viewing directions were up to approximately 40 ?K for the vertically polarized channel at 85.5 GHz in the case study. The impact of the 3-D effect on the passive microwave rainfall estimations was also examined by synthetic retrievals employing a Bayesian methodology. The results showed that the uncertainty in the rainfall estimations due to the 3-D effect depended on the viewing directions considered in the a priori information. It was also found that taking more viewing angles or the azimuth angles in the a priori information into consideration tended to moderate the retrieval difference that resulted from the different viewing directions. In addition, the retrieval uncertainty related to the 3-D effect appeared to be more signi?cant for heavy rainfall cases with large amounts of ice particles, as expected.

    关键词: 3-D radiative transfer,precipitation,3-D effect,Passive microwave remote sensing

    更新于2025-09-23 15:19:57

  • Novel Square-Waveguide Dual-Mode Two-Way Reactive Power Divider

    摘要: Vertically and horizontally inhomogeneous distributions of hydrometeors are often observed in precipitating clouds. The 3-D characteristics can then cause errors in the passive microwave rainfall measurements with the current off-nadir viewing sensors’ specific specifications. This result is due to the fact that the same surface rainfall could be associated with different amounts of hydrometeors depending on the sensors’ viewing paths. In this paper, we confirmed that the plane-parallel radiative treatment to the atmosphere leaves a notable deficiency in the microwave radiometric signatures, particularly at the higher frequency channels for different viewing directions when largely inhomogeneous precipitating clouds are accompanied by significant ice particles. The mean differences between the two brightness temperature fields with two opposite azimuthal viewing directions were up to approximately 40 ?K for the vertically polarized channel at 85.5 GHz in the case study. The impact of the 3-D effect on the passive microwave rainfall estimations was also examined by synthetic retrievals employing a Bayesian methodology. The results showed that the uncertainty in the rainfall estimations due to the 3-D effect depended on the viewing directions considered in the a priori information. It was also found that taking more viewing angles or the azimuth angles in the a priori information into consideration tended to moderate the retrieval difference that resulted from the different viewing directions. In addition, the retrieval uncertainty related to the 3-D effect appeared to be more significant for heavy rainfall cases with large amounts of ice particles, as expected.

    关键词: 3-D radiative transfer,precipitation,3-D effect,Passive microwave remote sensing

    更新于2025-09-19 17:13:59

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Vegetation Water Content Estimation for Corn by Means of Inverse Modeling from Simulations of the First-Order Scattering Model

    摘要: Vegetation water content (VWC) is a key variable in land-atmosphere interactions and plays an important role in agriculture, climate and hydrology. Based on the first-order scattering model, simulation database of corn backscattering coefficients at L-band was established. The simulations were used to train an artificial neural network (ANN) to establish an inverse model for corn VWC estimation during corn growth periods. The inverse accuracy of the trained ANN was evaluated using ground corn samplings and radar data acquired by the Passive and Active L- and S-band (PALS) airborne microwave sensor during the Soil Moisture Experiments in 2002 (SMEX02). Moreover, the corn VWC inversion results were compared to those obtained from an empirical method using the radar vegetation index (RVI). Result showed that the ANN method is superior to the RVI method and capable of estimating corn VWC with a correlation coefficient (R) of 0.7987, a root mean square error (RMSE) of 0.6033 kg/m2 and a mean absolute relative error (MARE) of 12.00%.

    关键词: artificial neural network,corn,active microwave remote sensing,first-order scattering model,vegetation water content

    更新于2025-09-10 09:29:36

  • Vegetation Optical Depth and Soil Moisture Retrieved from L-Band Radiometry over the Growth Cycle of a Winter Wheat

    摘要: L-band radiometer measurements were performed at the Selhausen remote sensing field laboratory (Germany) over the entire growing season of a winter wheat stand. L-band microwave observations were collected over two different footprints within a homogenous winter wheat stand in order to disentangle the emissions originating from the soil and from the vegetation. Based on brightness temperature (TB) measurements performed over an area consisting of a soil surface covered by a reflector (i.e., to block the radiation from the soil surface), vegetation optical depth (τ) information was retrieved using the tau-omega (τ-ω) radiative transfer model. The retrieved τ appeared to be clearly polarization dependent, with lower values for horizontal (H) and higher values for vertical (V) polarization. Additionally, a strong dependency of τ on incidence angle for the V polarization was observed. Furthermore, τ indicated a bell-shaped temporal evolution, with lowest values during the tillering and senescence stages, and highest values during flowering of the wheat plants. The latter corresponded to the highest amounts of vegetation water content (VWC) and largest leaf area index (LAI). To show that the time, polarization, and angle dependence is also highly dependent on the observed vegetation species, white mustard was grown during a short experiment, and radiometer measurements were performed using the same experimental setup. These results showed that the mustard canopy is more isotropic compared to the wheat vegetation (i.e., the τ parameter is less dependent on incidence angle and polarization). In a next step, the relationship between τ and in situ measured vegetation properties (VWC, LAI, total of aboveground vegetation biomass, and vegetation height) was investigated, showing a strong correlation between τ over the entire growing season and the VWC as well as between τ and LAI. Finally, the soil moisture was retrieved from TB observations over a second plot without a reflector on the ground. The retrievals were significantly improved compared to in situ measurements by using the time, polarization, and angle dependent τ as a priori information. This improvement can be explained by the better representation of the vegetation layer effect on the measured TB.

    关键词: inverse modeling,SMOS,vegetation optical depth,microwave remote sensing,SMAP,soil moisture,winter wheat,tower-based experiment

    更新于2025-09-10 09:29:36

  • SCATTERING AND TRANSMISSION OF WAVES IN MULTIPLE RANDOM ROUGH SURFACES: ENERGY CONSERVATION STUDIES WITH THE SECOND ORDER SMALL PERTURBATION METHOD

    摘要: Energy conservation is an important consideration in wave scattering and transmission from random rough surfaces and is particularly important in passive microwave remote sensing. In this paper, we study energy conservation in scattering from layered random rough surfaces using the second order small perturbation method (SPM2). SPM2 includes both first order incoherent scattering and a second order correction to the coherent fields. They are combined to compute the total reflected and transmitted powers, as a sum of integrations over wavenumber kx, in which each integration includes the surface power spectra of a rough interface weighted by an emission kernel function (assuming the roughness of each interface is uncorrelated). We calculate the corresponding kernel functions which are the power spectral densities for one-dimensional (1D) surfaces in 2D scattering problems and examine numerical results for the cases of 2 rough interfaces and 51 rough interfaces. Because it is known that the SPM when evaluated to second order conserves energy, and it can be applied to second order for arbitrary surface power spectra, energy conservation can be shown to be satisfied for each value of kx in the kernel functions. The numerical examples show that energy conservation is obeyed for any dielectric contrast, any layer configuration and interface, and arbitrary roughness spectra. The values of reflected or transmitted powers predicted, however, are accurate only to second order in small surface roughness.

    关键词: roughness spectra,wave scattering,random rough surfaces,SPM2,transmission,passive microwave remote sensing,layered random rough surfaces,small perturbation method,power spectral densities,Energy conservation,dielectric contrast

    更新于2025-09-10 09:29:36