- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Unraveling the Structure-Property Relationship of Molecular Hole Transporting Materials for Perovskite Solar Cells
摘要: Clarifying the structural basis and microscopic mechanism lying behind electronic properties of molecular semiconductors is of paramount importance in further materials design to enhance the performance of perovskite solar cells. In this paper, three conjugated quasi-linear segments of 9,9-dimethyl-9H-fluorene, 9,9-dimethyl-2,7-diphenyl-9H-fluorene, and 2,6-diphenyldithieno[3,2-b:2',3'-d]thiophene are end-capped with two bis(4-methoxyphenyl)amino groups for structurally simple molecular semiconductors Z1, Z2, and Z3, which crystalline in the monoclinic, triclinic, and monoclinic space groups, respectively. The modes and energies of intermolecular noncovalent interactions in various closely packed dimers extracted from single crystals are computed based on the quantum theory of atoms in molecules and energy decomposition analysis. Transfer integrals, reorganization energies, and center-of-mass distances in these dimers as well as band structures of single crystals are also calculated to define the theoretical limit of hole transport and microscopic transport pictures. Joint X-ray diffraction and space-charge limiting current measurements on solution-deposited films suggest the dominant role of crystallinity in thin film hole mobility. Photoelectron spectroscopy and photoluminescence measurements show that an enhanced interfacial interaction between perovskite and Z3 could attenuate the adverse impact of reducing the energetic driving force of hole extraction. Our comparative studies show that molecular semiconductor Z3 with a properly aligned HOMO energy level and a high thin film mobility can be employed for efficient perovskite solar cells, achieving a good power conversion efficiency of 20.84%, which is even higher than that of 20.42% for spiro-OMeTAD control.
关键词: charge recombination,perovskite solar cell,molecular crystal,noncovalent interaction,crystallinity,charge transport,organic semiconductor
更新于2025-09-16 10:30:52
-
A Strongly Fluorescent Molecular Material Responsive to Physical/Chemical Stimuli and their Coupled Impact
摘要: Molecular materials with weak but extended and pliable supramolecular interactions are versatile candidates for eliciting stimuli-sensitive optical responses. A novel diaminodicyanoquinodimethane (DADQ) molecule, 7,7-bis(2-(2-pyridyl)ethylamino)-8,8-dicyanoquinodimethane (BPEDQ), has been synthesized and structurally characterized; it exhibits enhanced fluorescence emission in the aggregated and solid states, characteristic of DADQs. The pyridine moieties in the molecule, in addition to the amino and cyano groups of the strongly dipolar fluorophore moiety, induce extensive H-bonding interactions which can impart structural integrity to the solid material; this enables reversible crystalline-amorphous transformations triggered by mechanical grinding and solvent fuming. The concomitant fluorescence color and intensity switching are prominent and reversible. Protonation-deprotonation events induced by acidic and basic vapors also produce stark fluorescence response variations; the chemical stimuli also lead to amorphization of the solid. The full cycle of chemical and physical stimuli, and the consequence of their individual and coupled impact on the fluorescence emission, are illustrated using a BPEDQ-doped polymer thin film.
关键词: amorphous-crystalline transformation,stimuli-responsive,molecular crystal,protonation,fluorescence
更新于2025-09-11 14:15:04