修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

322 条数据
?? 中文(中国)
  • Prediction of two-dimensional topography of laser cladding based on neural network

    摘要: The two-dimensional morphology of the cladding layer has an important influence on the quality of the cladding layer and the crack tendency. Using the powerful nonlinear processing ability of the single hidden layer feedforward neural network, a prediction model between the cladding technological parameters and the two-dimensional morphology of the cladding layer is established. Taking the cladding parameters as the input and the two-dimensional morphology of the cladding as the output, the experimental data is used to train the network to achieve a high-level mapping of the input and output. On this basis, the algorithm of extreme learning machine is used to optimize the single hidden layer feedforward neural network to overcome the problems of slow convergence speed, more network training parameters and easy local convergence in back-propagation algorithm. The results show that the relationship between the cladding process parameters and the two-dimensional morphology of the cladding layer can be roughly reflected by the back-propagation algorithm. However, the prediction results are not stable and the error rate is between 10% and 40%. The neural network optimized by the extreme learning machine is utilized to get a better prediction result. The error rate is 10–20%.

    关键词: extreme learning machine.,BP neural network,Layer cladding,morphology prediction

    更新于2025-11-28 14:24:20

  • Effects of tilt angle between laser nozzle and substrate on bead morphology in multi-axis laser cladding

    摘要: Laser cladding has been increasingly used for repairing and remanufacturing critical and high-value components due to its unique benefits such as high solidification rates and a small heat-affected zone. In laser cladding, tilt angle between a laser nozzle and a substrate has a significant impact on deposited bead morphology. To ensure the quality of laser cladding, the effects of tilt angle on bead morphology are investigated in this study. An analytical model is introduced to predict bead shapes for three tilting postures. In the first case, a substrate remains horizontal while the nozzle is tilted. All three parameters, including width, height, and peak point offset, will be influenced by the laser beam power distribution. In the second case, a substrate is tilted while the laser nozzle is kept axial to the substrate’s normal, the peak point offset will ascend along with the increasing of the tilt angle (gravity effect). In the third case, the laser nozzle remains vertical while the substrate is tilted, which leads to variations of cladding width, cladding height, and especially peak point shifting value. These parameters will be dependent on the integrated effect of gravity and the laser beam power distribution. A set of experiments is conducted to demonstrate the effectiveness of the proposed model. This study illustrates that the variation of cladding width and height with the tilt angle can be accurately calculated by the predictive model, and that the peak point shifting value is roughly smaller than 5% of cladding width when the tilt angle is less than 30°. These findings show that trajectory planning of multi-axis laser cladding can be optimized using an acceptable range of tilt angle between the laser nozzle and substrate.

    关键词: Bead morphology,Laser beam power distribution,Laser cladding,Tilting posture,Gravity effect

    更新于2025-11-28 14:24:20

  • Evaluation of fluences and surface characteristics in laser polishing SKD 11 tool steel

    摘要: In this paper, a continuous-wave laser beam from a multimode fiber laser was applied to study the polishing effect. Three kinds of surface morphologies were acquired by fast-speed (FS) & lower-speed (LS) wire electrical discharge machining (EDM), milling processing methods on SKD11 tool steel. Then influence of laser fluence on the polished surface characteristics was analyzed. The results showed that surface roughness parameters (Ra, Rz, Rt, and Sa) can be significantly affected by this effect. With laser fluence increasing, the polished surface underwent a comprehensive topographical evolution from superficial surface melting to surface over-melting. The improvements by FS-EDM, LS-EDM, and milling in roughness were 86.83%, 90.70% and 86.07%, respectively. The corresponding laser fluences were 14.26 J/mm2, 12.73 J/mm2 and 13.55 J/mm2, indicating that LS-EDM tool steel surface has the best polishing effect. The comparative statistical results of the bearing area curve, bidirectional reflectance distribution function, and power spectral density from the LS-EDM surfaces showed the best polishing results. In addition, all the pre-prepared surfaces could be polished to Ra < 0.5 μm using high polishing velocities. These findings also signified that laser beam with top-hat distribution has a great potential for high-efficiency polishing of tool steel surfaces.

    关键词: Power spectral density,Surface morphology,Bearing area curve,Fluence,Laser polishing,Tool steel

    更新于2025-11-28 14:24:20

  • Morphology Phase Diagram of Slot‐Die Printed TiO <sub/>2</sub> Films Based on Sol–Gel Synthesis

    摘要: Mesoporous titania films with tailored nanostructures are fabricated via slot-die printing, which is a simple and cost-effective thin-film deposition technique with the possibility of a large-scale manufacturing. Based on this technique, which is favorable in industry, TiO2 films possess the similar advantage with polymer semiconducting devices like ease of large-scale production. The titania morphologies, including foam-like nanostructures, nanowire aggregates, collapsed vesicles and nanogranules, are achieved via a so-called block-copolymer-assisted sol–gel synthesis. By adjusting the weight fraction of reactants, the ternary morphology phase diagram of the printed titania films is probed after template removal. The surface and inner morphology evolutions are explored with scanning electron microscopy and grazing incidence small-angle X-ray scattering, respectively. Special focus is set on foam-like titania nanostructures as they are of especial interest for, e.g., solar cell applications. At a low weight fraction of the titania precursor titanium(IV)isopropoxide (TTIP), foam-like titania films are achieved, which exhibit a high uniformity and possess large pore sizes. The anatase phase of the highly crystalline titania films is verified with X-ray diffraction and transmission electron microscopy.

    关键词: TiO2 films,crystallinity,morphology phase diagram,printing,GISAXS

    更新于2025-11-21 11:20:42

  • Hexagonal Boron Nitride Growth on Cu-Si Alloy: Morphologies and Large Domains

    摘要: Controllable synthesis of high-quality hexagonal boron nitride (h-BN) is desired toward the industrial application of 2D devices based on van der Waals heterostructures. Substantial efforts are devoted to synthesize h-BN on copper through chemical vapor deposition, which has been successfully applied to grow graphene. However, the progress in synthesizing h-BN has been significantly retarded, and it is still challenging to realize millimeter-scale domains and control their morphologies reliably. Here, the nucleation density of h-BN on Cu is successfully reduced by over two orders of magnitude by simply introducing a small amount of silicon, giving rise to large triangular domains with maximum 0.25 mm lateral size. Moreover, the domain morphologies can be modified from needles, tree patterns, and leaf darts to triangles through controlling the growth temperature. The presence of silicon alters the growth mechanism from attachment-limited mode to diffusion-limited mode, leading to dendrite domains that are rarely observed on pure Cu. A phase-field model is utilized to reveal the growing dynamics regarding B-N diffusion, desorption, flux, and reactivity variables, and explain the morphology evolution. The work sheds lights on the h-BN growth toward large single crystals and morphology probabilities.

    关键词: large domain,boron nitride,growth,morphology,chemical vapor deposition

    更新于2025-11-21 11:18:25

  • Fusing Nanowires into Thin Films: Fabrication of Graded‐Heterojunction Perovskite Solar Cells with Enhanced Performance

    摘要: Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole-transporting-layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally-graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near-ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded-heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3-nanocrystals modification and with CsPbBr3-nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.

    关键词: nanocrystals,morphology control,heterojunction,solar cells,halide perovskites

    更新于2025-11-20 15:33:11

  • New insights into active-area-dependent performance of hybrid perovskite solar cells

    摘要: The morphology of hybrid perovskite thin films depends strongly on the processing parameters due to its complex crystallization kinetics from a solution to solid perovskite halide phase. It is also profoundly sensitive to the device area of the deposited thin film, and hence reproducible photoconversion efficiency (PCE) remained a bottleneck for the fabrication of efficient photovoltaic devices having large active area. The present work focuses on the investigations of the relationship between perovskite ink concentration-dependent quality of the perovskite overlayer and PCE of the perovskite solar cells (PSC) while scaling-up process. The field-emission scanning electron microscopy images revealed that the surface coverage of perovskite overlayer depends on the concentration of perovskite solution and device area. The active-area-dependent current density (J)-voltage (V) and external quantum efficiency measurements identify morphology-dependent variation in charge-transport/recombination pathways. We confirmed that among different precursor concentrations, 40 wt% perovskite ink is suitable to produce uniform perovskite overlayer over 1 cm2. As a result, highly reproducible PCE * 13% has been achieved for the PSC having an active area of 1 cm2. Overall, our findings significantly provide new insights into the active-area-dependent PCE of PSC.

    关键词: morphology,hybrid perovskite,charge-transport,photoconversion efficiency,solar cells,recombination pathways

    更新于2025-11-19 16:56:42

  • POSS: A Morphology-Tuning Strategy to Improve the Sensitivity and Responsiveness of Dissolved Oxygen Sensor

    摘要: Dissolved oxygen (DO) plays a crucial role in environment, food processing, and biotechnology. Although several physical-doping DO probes have been developed, a sensitive and reliable sensor for real-time and non-invasive DO detection in bioprocess is still challenging. Here we demonstrate a morphology-tuning strategy to improve the sensitivity and responsiveness of DO polymeric sensors (P(Pt-TPP-TFE-Ad) and P(Pt-TPP-TFE-POSS)) by decorating with the same platinum(II) porphyrins and different morphology-tunable moieties in supporting matrix. Experimental results manifest the sensitivity and response of sensors increase with size effect of the morphology-tunable moiety in due that the bulky morphology-tunable moiety facilitates the formation of interconnected and porous network that can promote oxygen permeability. Additionally, P(Pt-TPP-TFE-POSS) features excellent linear Stern-Volmer quenching, superior stability, and reversible response, thereby permitting the real-time and non-invasive quantification of DO during cephalosporin C fermentation. Our work offers an ideal tool for online sensing of DO in industrial and biological applications.

    关键词: porphyrin,sensors,biofermentation,morphology-tuning,dissolved oxygen

    更新于2025-11-19 16:56:35

  • Distinguishing the effects of altered morphology and size on visible-light-induced water oxidation activity and photoelectrochemical performance of BaTaO2N crystal structures

    摘要: Factors, including crystallinity, morphology, size, preferential orientation, growth, composition, porosity, surface area, etc., can directly influence the optical, charge-separation, charge-transfer and water oxidation and reduction properties of particle-based photocatalysts. Therefore, these factors must be considered when designing high-performance particle-based photocatalysts for solar water splitting. Here, a flux growth method was applied to alter the morphology and size of the Ba5Ta4O15 precursor oxide crystals using BaCl2, KCl, RbCl, CsCl, KCl+BaCl2 and K2SO4 at different solute concentrations, and the impact of nitridation with and without KCl flux was studied. Specifically, the effects of altered morphology and size on the visible-light-induced water oxidation activity and photoelectrochemical performance of the BaTaO2N crystal structures were investigated. Upon nitridation, the samples became porous due to the lattice shrinkage caused by the replacement of 3 O2? with 2 N3? in the anionic network. The BaTaO2N crystal structures obtained by nitridation without KCl flux show higher surface areas than do their counterparts prepared by nitridation with KCl flux because of the formation of porous networks. All samples exhibited a high anodic photocurrent upon nitridation without KCl flux compared with that of the samples obtained by nitridation with KCl flux. The findings demonstrate that it is important to specifically engineer photocatalytic crystals to reach their maximum potential in solar water splitting.

    关键词: Water splitting,Visible light,Flux growth,Crystal size,Morphology,BaTaO2N

    更新于2025-11-19 16:51:07

  • Building Intermixed Donor-Acceptor Architectures for Water-Processable Organic Photovoltaics

    摘要: A modified synthesis method for aqueous nanoparticle printing inks, based upon vacuum-assisted solvent removal, is reported. Poly(3-hexylthiophene) : phenyl C61 butyric acid methyl ester nanoparticle inks were prepared via this modified miniemulsion method; leading to both an improvement in photoactive layer morphology and a substantial reduction in the ink fabrication time. A combination of UV-visible spectroscopy, photoluminescence spectroscopy and scanning transmission X-ray microscopy measurements revealed a nanoparticle morphology comprised of highly intermixed donor-acceptor domains. Consistent with these measurements, dynamic mechanical thermal analysis of the nanoparticles showed a glass transition temperature (Tg) of 104 °C, rather than a pure polymer phase or pure fullerene phase Tg. Together the spectroscopy, microscopy and thermomechanical data indicate that rapid solvent removal generates a more blended nanoparticle morphology. As such, this study highlights a new experimental lever for optimising nanostructure in the photoactive layer of nanoparticulate organic photovoltaic devices by enabling highly intermixed donor-acceptor architectures to be built from customised nanoparticulate inks.

    关键词: organic photovoltaic,scanning transmission X-ray microscopy,morphology,colloidal inks,exciton dissociation,Nanostructure,eco-friendly processing

    更新于2025-11-19 16:46:39