- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Subcycle Nonlinear Response of Doped 4 <i>H</i> Silicon Carbide Revealed by Two-Dimensional Terahertz Spectroscopy
摘要: We investigate single-cycle terahertz (THz) field-induced nonlinear absorption in doped silicon carbide. We find that the nonlinear response is ultrafast, and we observe up to 20% reduction of transmission of single THz pulses at peak field strengths of 280 kV/cm. We model the field and temperature dependence of the nonlinear response by finite-difference time-domain simulation that incorporates the temporally nonlocal nonlinear conductivity of the silicon carbide. Nonlinear two-dimensional THz spectroscopy reveals that the nonlinear absorption has an ultrafast sub-picosecond recovery time, with contributions from both sum-frequency generation and four-wave mixing, in the form of a photon-echo signal. The ultrafast nonlinearity with its equally fast recovery time makes silicon carbide an interesting candidate material for extremely fast nonlinear THz modulators.
关键词: field-driven tunnelling,ultrabroadband spectroscopy,Silicon carbide,nonlinear response,terahertz spectroscopy,multidimensional spectroscopy
更新于2025-09-12 10:27:22
-
[Topics in Current Chemistry Collections] Multidimensional Time-Resolved Spectroscopy || Multidimensional Vibrational Coherence Spectroscopy
摘要: Multidimensional vibrational coherence spectroscopy has been part of laser spec-troscopy since the 1990s and its role in several areas of science has continuously been increasing. In this contribution, after introducing the principals of vibrational coherence spectroscopy (VCS), we review the three most widespread experimen-tal methods for multidimensional VCS (multi-VCS), namely femtosecond stimu-lated Raman spectroscopy, pump-impulsive vibrational spectroscopy, and pump-degenerate four wave-mixing. Focus is given to the generation and typical analysis of the respective signals in the time and spectral domains. Critical aspects of all multidimensional techniques are the challenges in the data interpretation due to the existence of several possible contributions to the observed signals or to opti-cal interferences and how to overcome the corresponding difficulties by exploiting experimental parameters including higher-order nonlinear effects. We overview how multidimensional vibrational coherence spectroscopy can assist a chemist in under-standing how molecular structural changes and eventually photochemical reactions take place. In order to illustrate the application of the techniques described in this chapter, two molecular systems are discussed in more detail in regard to the vibra-tional dynamics in the electronic excited states: (1) carotenoids as a non-reactive system and (2) stilbene derivatives as a reactive system.
关键词: Excited states,Photoisomerization,Multidimensional spectroscopy,Coherence spectroscopy,Vibronic coupling,Ultrafast laser spectroscopy,Raman,Vibrational spectroscopy
更新于2025-09-04 15:30:14
-
[Topics in Current Chemistry Collections] Multidimensional Time-Resolved Spectroscopy || Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions
摘要: Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.
关键词: Coherence transfer,Raman spectroscopy,Multidimensional spectroscopy,Ultrafast spectroscopy,Photodissociation
更新于2025-09-04 15:30:14