- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Antimicrobial-Peptide-Conjugated MoS2 Based Nanoplatform for Multimodal Synergistic Inactivation of Superbugs
摘要: Development of new antibacterial therapeutics material is becoming increasingly urgent due to the huge threat of superbugs, which are responsible for more than half million death each year in this world. Here, we report the development of novel nano-biomaterial based on melittin antimicrobial peptide (AMP) attached transition metal dichalcogenide MoS2 based theranostic nanoplatform. Reported nanoplatform has capability for targeted identification and synergistic inactivation of 100% multidrug-resistant superbugs by combined photo thermal therapy (PTT), photodynamic therapy (PDT) and AMP process. A novel approach for the design of melittin antimicrobial peptide attached MoS2 based nanoplatform is reported, which emits very bright and photo stable fluorescence. It also generates heat as well as reactive oxygen species (ROS) in the presence of 670 nm near infrared light, which allow it to be used as PTT & PDT agent. Due to the presence of AMP, multifunctional AMP exhibits significantly improved antibacterial activity for superbugs via multimodal synergistic killing mechanism. Reported data demonstrate that nanoplatforms are capable of identification of multidrug-resistant superbugs via luminescence imaging. Experimental results show that it is possible to kill only ~45% of superbugs via MoS2 nanopaltform based on PTT & PDT processes together. On the other hand, killing of less than 10% of superbugs is possible using melittin antimicrobial peptide alone. Whereas, 100% Methicillin-resistant Staphylococcus aureus (MRSA), drug resistance Escherichia coli (E. coli) and drug resistance Klebsiella pneumoniae (KPN) superbugs can be killed using antimicrobial peptide attached MoS2 QDs, via synergistic killing mechanism. Mechanisms for possible synergistic killing of multidrug-resistant superbugs have been discussed.
关键词: theranostic transition metal dichalcogenide,photodynamic therapy,multimodal therapy for multidrug-resistant superbugs,Melittin antimicrobial peptide attached MoS2 based nanoplatform,photo thermal therapy
更新于2025-09-23 15:23:52
-
Reduced Graphene Oxide Functionalized with Gold Nanostar Nanocomposites for Synergistically Killing Bacteria through Intrinsic Antimicrobial Activity and Photothermal Ablation
摘要: The exploration of multifunctional photothermal agent is important for antibacterial photothermal lysis, which has emerged as an effective approach to address the problem of pathogenic bacteria infection irrespective of the drug resistant effect. In the present work, a 2D reduced graphene oxide supported Au nanostar nanocomposite (rGO/AuNS) was prepared by the seed mediated growth method for synergistically killing multidrug resistant bacteria. Owing to the prickly and sharp-edge nanostructure, the rGO/AuNS displayed superior antibacterial activity probably due to the damaging of the cell walls or membranes. The cell viability of MRSA was as low as 32% when the MRSA were incubated with rGO/AuNS for 180 min in the absence of light. The 2D structure of the rGO/AuNS facilitated the strong binding affinity towards bacteria. Upon the 808 nm NIR laser irradiation, significant enhancement in bactericidal efficiency (complete death) was obtained due to the localized hyperthermal effect of rGO/AuNS. Moreover, the RGO/AuNS displayed promising biocompatibility. It indicates that the rGO/AuNS can be an alternative and effective dual functional photothermal agent for synergistically killing the multidrug resistant bacteria.
关键词: Reduced Graphene Oxide,Multidrug-resistant bacteria,Antibacterial photothermal lysis,Gold nanostars,Prickly nanostructure
更新于2025-09-23 15:22:29
-
A multifunctional platform with single-NIR-laser-triggered photothermal and NO release for synergistic therapy against multidrug-resistant Gram-negative bacteria and their biofilms
摘要: Background: Infectious diseases caused by multidrug-resistant (MDR) bacteria, especially MDR Gram-negative strains, have become a global public health challenge. Multifunctional nanomaterials for controlling MDR bacterial infections via eradication of planktonic bacteria and their biofilms are of great interest. Results: In this study, we developed a multifunctional platform (TG-NO-B) with single NIR laser-triggered PTT and NO release for synergistic therapy against MDR Gram-negative bacteria and their biofilms. When located at the infected sites, TG-NO-B was able to selectively bind to the surfaces of Gram-negative bacterial cells and their biofilm matrix through covalent coupling between the BA groups of TG-NO-B and the bacterial LPS units, which could greatly improve the antibacterial efficiency, and reduce side damages to ambient normal tissues. Upon single NIR laser irradiation, TG-NO-B could generate hyperthermia and simultaneously release NO, which would synergistically disrupt bacterial cell membrane, further cause leakage and damage of intracellular components, and finally induce bacteria death. On one hand, the combination of NO and PTT could largely improve the antibacterial efficiency. On the other hand, the bacterial cell membrane damage could improve the permeability and sensitivity to heat, decrease the photothermal temperature and avoid damages caused by high temperature. Moreover, TG-NO-B could be effectively utilized for synergistic therapy against the in vivo infections of MDR Gram-negative bacteria and their biofilms and accelerate wound healing as well as exhibit excellent biocompatibility both in vitro and in vivo. Conclusions: Our study demonstrates that TG-NO-B can be considered as a promising alternative for treating infections caused by MDR Gram-negative bacteria and their biofilms.
关键词: Biofilms,Single-NIR-laser-triggered,Graphene,NO release,Multidrug-resistant Gram-negative bacteria,Synergistic,Photothermal
更新于2025-09-23 15:19:57
-
Photo-inactivation and efflux pump inhibition of methicillin resistant Staphylococcus aureus using thiolated cobalt doped ZnO nanoparticles
摘要: Multidrug resistance (MDR) in bacteria is a major concern these days. One of the reasons is the mutation in efflux pump that prevents the retention of antibiotics and drugs in the bacterial cell. The current work is a step to overcome MDR in bacteria via inhibition of efflux pump and further photoinhibition by thiolated chitosan coated cobalt doped zinc oxide nanoparticles (Co-ZnO) in visible light. Co-ZnO were synthesized in a size range of 40–60 nm. Antibacterial activity of the Co-ZnO against methicillin resistant Staphylococcus aureus (MRSA) was found 100% at a concentration of 10 μg/ml upon activation in sunlight for 15 min. Interestingly, it was found that cobalt as a dopant was able to increase the photodynamic and photothermal activity of Co-ZnO, as in dark conditions, there was only 3–5% of inhibition at 10 μg/ml of nanoparticle concentration. Upon excitation in light, these nanoparticles were able to generate reactive oxygen species (ROS) with a quantum yield of 0.23 ± 0.034. The nanoparticles were also generating heat, Because of the magnetic nature, thus helping in more killing. Thiolated chitosan further helped in blocking the efflux pump of MRSA. The current nanoparticles were also found biocompatible on human red blood cells (LD50 = 214 μg/ml). These data suggest that the MRSA killing ability was facilitated through efflux inhibition and oxidative stress upon excitation in visible light hence, were in accordance with previous findings.
关键词: Multidrug resistant bacteria,Biocompatibility,ZnO nanoparticles,Photo-inactivation,ROS,MRSA
更新于2025-09-19 17:15:36
-
Hydrogel-embedded gold nanorods activated by plasmonic photothermy with potent antimicrobial activity
摘要: Plasmonic photothermal therapy (PPTT) has been used as an alternative to chemotherapy for the elimination of resistant microorganisms; however, its in situ evaluation has not been well studied. In the present study, we assessed the antimicrobial activity of a chitosan-based hydrogel embedded with gold nanorods (Ch/AuNRs) using a low power infrared diode laser. The antibacterial activity was measured in both Gram-positive and –negative strains, including clinical isolates of multidrug-resistant pathogens. The cytotoxic effect, cellular proliferation, and the expression of the pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines were quantified in a murine model of macrophages. Results showed a potent antimicrobial activity of the Ch/AuNRs with MICs ≤4 μg/mL, very low cytotoxicity with cell viability above 80%, and the macrophage proliferation was not affected for a period of 48 h. These results suggest that our Ch/AuNR-embedded hydrogel could be an option to locally control chronic nosocomial infections using PPTT.
关键词: inflammation,multidrug resistant,antifungal,photothermal therapy,gold nanorod,cytotoxicity,chitosan,antibacterial
更新于2025-09-16 10:30:52