修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

10 条数据
?? 中文(中国)
  • High-bandwidth 3D Multi-Trap Actuation Technique for 6-DoF Real-Time Control of Optical Robots

    摘要: Optical robots are micro-scale structures actuated using laser trapping techniques. However, the lack of robust and real-time 3D actuation techniques reduces most applications to planar space. We present here a new approach to generate and control several optical traps synchronously in 3D with low latency and high bandwidth (up to 200 Hz). This time-shared technique uses only mirrors, hence is aberration-free. Simultaneous traps are used to actuate optical robots and provide 6-DoF telemanipulation. Experiments demonstrate the flexibility and dexterity of the implemented user control, paving the way to novel applications in micro-robotics and biology.

    关键词: Optical Manipulation,Biological Cell Manipulation,Micro/Nano Robots,Telerobotics and Teleoperation

    更新于2025-09-23 15:22:29

  • Spatiotemporal dynamics of aggregation-induced emission enhancement controlled by optical manipulation

    摘要: We present spatiotemporal control of aggregation-induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer-sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission. The fluorescence intensity at the peak wavelength of 540 nm is tremendously enhanced with growth, meaning that AIEE is activated by optical manipulation. Amazingly, the switching on/off of the activation of AIEE is arbitrarily controlled by alternating the laser power. This result means that local concentration, which increases the optical manipulation tool overcomes the electrostatic repulsion between the protonated molecules, namely, optical manipulation changes the aggregate structure. The dynamics and mechanism in AIEE controlled by optical manipulation will be discussed from the viewpoint of molecular conformation and association depending on the laser power.

    关键词: Aggregation-induced emission enhancement,Fluorescence microspectroscopy,tertiary ammonium-appended tetraphenylethene,Spatiotemporal control,Optical manipulation

    更新于2025-09-23 15:19:57

  • Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots

    摘要: We review distinct features arising from the unique nature of the carrier-phonon coupling in self-assembled semiconductor quantum dots. Because of the discrete electronic energy structure, the pure dephasing coupling usually dominates the phonon effects, of which two properties are of key importance: The resonant nature of the dot-phonon coupling, its non-monotonic behavior as a function of energy, and the fact that it is of super-Ohmic type. Phonons do not only act destructively in quantum dots by introducing dephasing, they also offer new opportunities, e.g. in state preparation protocols. Apart from being an interesting model systems for studying fundamental physical aspects, quantum dot and quantum dot-microcavity systems are a hotspot for many innovative applications. We discuss recent developments related to the decisive impact of phonons on key figures of merit of photonic devices like single or entangled photon sources under aspects like indistinguishability, purity and brightness. All in all it follows that understanding and controlling the carrier-phonon interaction in semiconductor quantum dots is vital for their usage in quantum information technology.

    关键词: Non-Markovian dynamics,quantum information processing,optical manipulation,Semiconductor quantum dots,carrier-phonon interaction,photonics

    更新于2025-09-12 10:27:22

  • Optical Trapping and Manipulation Using Optical Fibers

    摘要: An optical trap forms a restoring optical force field to immobilize and manipulate tiny objects. A fiber optical trap is capable of establishing the restoring optical force field using one or a few pieces of optical fiber, and it greatly simplifies the optical setup by removing bulky optical components, such as microscope objectives from the working space. It also inherits other major advantages of optical fibers: flexible in shape, robust against disturbance, and highly integrative with fiber-optic systems and on-chip devices. This review will begin with a concise introduction on the principle of optical trapping techniques, followed by a comprehensive discussion on different types of fiber optical traps, including their structures, functionalities and associated fabrication techniques. A brief outlook to the future development and potential applications of fiber optical traps is given at the end.

    关键词: Optical manipulation,Optical trapping,Fiber optical traps,Optical fiber

    更新于2025-09-11 14:15:04

  • A vector holographic optical trap

    摘要: The invention of optical tweezers almost forty years ago has triggered applications spanning multiple disciplines and has also found its way into commercial products. A major breakthrough came with the invention of holographic optical tweezers (HOTs), allowing simultaneous manipulation of many particles, traditionally done with arrays of scalar beams. Here we demonstrate a vector HOT with arrays of digitally controlled Higher-Order Poincaré Sphere (HOPS) beams. We employ a simple set-up using a spatial light modulator and show that each beam in the array can be manipulated independently and set to an arbitrary HOPS state, including replicating traditional scalar beam HOTs. We demonstrate trapping and tweezing with customized arrays of HOPS beams comprising scalar orbital angular momentum and cylindrical vector beams, including radially and azimuthally polarized beams simultaneously in the same trap. Our approach is general enough to be easily extended to arbitrary vector beams, could be implemented with fast refresh rates and will be of interest to the structured light and optical manipulation communities alike.

    关键词: vector beams,optical manipulation,Higher-Order Poincaré Sphere,holographic optical tweezers,optical tweezers

    更新于2025-09-09 09:28:46

  • Revolution and spin of a particle induced by an orbital-angular-momentum-carrying Laguerre-Gaussian beam in a dielectric chiral medium

    摘要: We reveal an interesting phenomenon of the acceleration and deceleration of the phase rotation for an orbital-angular-momentum-carrying Laguerre-Gaussian beam in a chiral medium. Under this circumstance, the differences between the optical force and optical torque exerted on a dielectric spherical particle for chiral and achiral cases are demonstrated. The optical force and torque are exerted on the particle simultaneously, which makes the particle revolve and spin simultaneously, as a planet in the solar system. We hope the results may point to a unique routine of optical manipulation.

    关键词: optical manipulation,chiral medium,optical torque,Laguerre-Gaussian beam,optical force

    更新于2025-09-09 09:28:46

  • The photonic candle

    摘要: Using light to manipulate small particles has proven an indispensable tool for ‘tweezing’, sorting and force measurements. To achieve effective optical traps with high ‘stiffness’, researchers often go to great lengths to tailor light fields, for example by using holographic elements. Now, Aliaksandra Ivinskaya and colleagues from Russia, the USA, the UK and Israel predict that small particles can be manipulated using a plane wave of light and a simple flat surface of an anisotropic media supporting hyperbolic modes. Their hyperbolic metamaterial is composed of metal and dielectric layers and is potentially less affected by losses and offers more broadband capability than purely plasmonic approaches. In their theoretical study a small dielectric sphere near a hyperbolic metamaterial is considered. The particle is sufficiently small to provide the required momentum to excite both surface plasmon and bulk hyperbolic waves from incident plane waves. Strong optical pulling forces were predicted over the 400–800 nm wavelength range thanks to the broadband high density of states of hyperbolic modes.

    关键词: hyperbolic modes,nano-optics,optical manipulation,metasurface,plasmon

    更新于2025-09-09 09:28:46

  • Ultrawide tunability

    摘要: Using light to manipulate small particles has proven an indispensable tool for ‘tweezing’, sorting and force measurements. To achieve effective optical traps with high ‘stiffness’, researchers often go to great lengths to tailor light fields, for example by using holographic elements. Now, Aliaksandra Ivinskaya and colleagues from Russia, the USA, the UK and Israel predict that small particles can be manipulated using a plane wave of light and a simple flat surface of an anisotropic media supporting hyperbolic modes. Their hyperbolic metamaterial is composed of metal and dielectric layers and is potentially less affected by losses and offers more broadband capability than purely plasmonic approaches. In their theoretical study a small dielectric sphere near a hyperbolic metamaterial is considered. The particle is sufficiently small to provide the required momentum to excite both surface plasmon and bulk hyperbolic waves from incident plane waves. Strong optical pulling forces were predicted over the 400–800 nm wavelength range thanks to the broadband high density of states of hyperbolic modes.

    关键词: hyperbolic modes,nano-optics,optical manipulation,metasurface,plasmon

    更新于2025-09-09 09:28:46

  • Compact and efficient

    摘要: Using light to manipulate small particles has proven an indispensable tool for ‘tweezing’, sorting and force measurements. To achieve effective optical traps with high ‘stiffness’, researchers often go to great lengths to tailor light fields, for example by using holographic elements. Now, Aliaksandra Ivinskaya and colleagues from Russia, the USA, the UK and Israel predict that small particles can be manipulated using a plane wave of light and a simple flat surface of an anisotropic media supporting hyperbolic modes. Their hyperbolic metamaterial is composed of metal and dielectric layers and is potentially less affected by losses and offers more broadband capability than purely plasmonic approaches. In their theoretical study a small dielectric sphere near a hyperbolic metamaterial is considered. The particle is sufficiently small to provide the required momentum to excite both surface plasmon and bulk hyperbolic waves from incident plane waves. Strong optical pulling forces were predicted over the 400–800 nm wavelength range thanks to the broadband high density of states of hyperbolic modes.

    关键词: hyperbolic modes,nano-optics,optical manipulation,metasurface,plasmon

    更新于2025-09-09 09:28:46

  • Metasurface with pull

    摘要: Using light to manipulate small particles has proven an indispensable tool for ‘tweezing’, sorting and force measurements. To achieve effective optical traps with high ‘stiffness’, researchers often go to great lengths to tailor light fields, for example by using holographic elements. Now, Aliaksandra Ivinskaya and colleagues from Russia, the USA, the UK and Israel predict that small particles can be manipulated using a plane wave of light and a simple flat surface of an anisotropic media supporting hyperbolic modes. Their hyperbolic metamaterial is composed of metal and dielectric layers and is potentially less affected by losses and offers more broadband capability than purely plasmonic approaches. In their theoretical study a small dielectric sphere near a hyperbolic metamaterial is considered. The particle is sufficiently small to provide the required momentum to excite both surface plasmon and bulk hyperbolic waves from incident plane waves. Strong optical pulling forces were predicted over the 400–800 nm wavelength range thanks to the broadband high density of states of hyperbolic modes.

    关键词: metasurface,hyperbolic modes,plasmon,nano-optics,optical manipulation

    更新于2025-09-04 15:30:14