修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Cloud removal in remote sensing images using nonnegative matrix factorization and error correction

    摘要: In the imaging process of optical remote sensing platforms, clouds are an inevitable barrier to the effective observation of sensors. To recover the original information covered by the clouds and the accompanying shadows, a nonnegative matrix factorization (NMF) and error correction method (S-NMF-EC) is proposed in this paper. Firstly, a cloud-free fused reference image is obtained by a reference image and two or more low-resolution images using the spatial and temporal nonlocal filter-based data fusion model (STNLFFM). Secondly, the cloud-free fused reference image is used to remove the cloud cover of the cloud-contaminated image based on NMF. Finally, the cloud removal result is further improved by error correction. It is worth noting that cloud detection is not required by S-NMF-EC, and the cloud-free information of the cloud-contaminated image is maximally retained. Both simulated and real-data experiments were conducted to validate the proposed S-NMF-EC method. Compared with other cloud removal methods, the results demonstrate that S-NMF-EC is visually and quantitatively effective (correlation coefficients ≥ 0.99) for the removal of thick clouds, thin clouds, and shadows.

    关键词: Nonnegative matrix factorization,Multitemporal,Optical remote sensing image,Error correction,Cloud removal

    更新于2025-09-23 15:23:52

  • Detection of Multiclass Objects in Optical Remote Sensing Images

    摘要: Object detection in complex optical remote sensing images is a challenging problem due to the wide variety of scales, densities, and shapes of object instances on the earth surface. In this letter, we focus on the wide-scale variation problem of multiclass object detection and propose an effective object detection framework in remote sensing images based on YOLOv2. To make the model adaptable to multiscale object detection, we design a network that concatenates feature maps from layers of different depths and adopt a feature introducing strategy based on oriented response dilated convolution. Through this strategy, the performance for small-scale object detection is improved without losing the performance for large-scale object detection. Compared to YOLOv2, the performance of the proposed framework tested in the DOTA (a large-scale data set for object detection in aerial images) data set improves by 4.4% mean average precision without adding extra parameters. The proposed framework achieves real-time detection for 1024 ×1024 image using Titan Xp GPU acceleration.

    关键词: Feature introducing strategy,optical remote sensing image,object detection,oriented response (OR) dilated convolution

    更新于2025-09-23 15:22:29