- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Photovoltaic Properties and Series Resistance of <i>p</i> -Type Si/Intrinsic Si/ <i>n</i> -Type Nanocrystalline FeSi <sub/>2</sub> Heterojunctions Created by Utilizing Facing-Targets Direct-Current Sputtering
摘要: p-Type Si/intrinsic Si/n-type nanocrystalline iron disilicide heterojunctions were created by utilizing facing targets direct-current sputtering at the pressure of 1.33 × 10?1 Pa that investigated the photovoltaic properties. They exhibited a large leakage current and a small energy conversion ef?ciency of 0.62%. From using the method of Nicollian and Brews, the series resistance (Rs) values at zero bias voltage were 7.40 Ω at 2 MHz and 7.57 Ω at 50 kHz, respectively, which were in agreement with that estimated by the means of Norde. From applying the method of Hill-Coleman, the interface state density (Nss) values were 3.15 × 1015 cm?2 eV?1 at 50 kHz and 8.93 × 1013 cm?2 eV?1 at 2 MHz. The obtained results revealed the presence of Rs and Nss at the junction interface, which should be the potential cause of spoiled photovoltaic performance in the heterojunctions.
关键词: Heterojunctions,Facing-Targets Direct-Current Sputtering,Nanocrystalline Iron Disilicide,Series Resistance,Interface State Density
更新于2025-11-14 17:28:48
-
Dynamically Optimized Multi-Interface Novel BiSI-Promoted Redox Sites Spatially Separated N-p-n Double Heterojunctions BiSI/MoS2/CdS for Hydrogen Evolution
摘要: Novel BiSI promoted n-p-n double heterojunctions multi-interface photocatalyst BiSI/MoS2/CdS was constructed. BiSI is applied to photocatalytic hydrogen evolution. It possesses a small band gap and a strong optical absorption coefficient, therefore, the optical absorption scope and coefficient of MoS2/CdS have been effectively enhanced by compounding with BiSI. The continuous heterojunctions strengthened the function of single junction and guided the carriers’ transfer direction, thus the redox reactions occur at spatially separated sites. Built-in electric field along the radial direction of BiSI nanorod and MoS2 interlayer helps to transport carriers within lifetime. Carrier dynamics is optimized by multi-interface structure. In general, a new material BiSI is introduced to construct a multi-interface structure to optimize carrier dynamics, which resulted in a 46-fold increase in hydrogen production efficiency.
关键词: multi-interface,dynamics optimization,enhanced optical absorption,photocatalytic water splitting,n-p-n continuous heterojunctions,BiSI
更新于2025-11-14 15:29:11
-
A generic strategy for preparation of TiO2/BixMyOz (M?=?W, Mo) heterojunctions with enhanced photocatalytic activities
摘要: Employment of nanoscale TiO2/BixMyOz (M = W, Mo) heterojunctions is one of the most promising strategies for improving the photocatalytic efficiency. However, the controllable synthesis and morphology modification of these heterojunctions are still highly challenging. In this work, we developed a generic approach to hydrothermally synthesize TiO2/BixMyOz heterojunctions and tailor their morphologies. The key of this strategy is to intentionally utilize the surface defects of TiO2 as highly active sites to adsorb the intermediate hydrolysis-products, which is in marked contrast to the conventionally direct precipitation methods. In the subsequent hydrothermal reactions, MO4 2- replaced the hydroxyl and nitrate radicals to form stable TiO2/BixMyOz heterojunctions, in which the second phase BixMyOz occupied the defect sites of TiO2 nanobelts. Under visible light irradiation, the photocatalytic reaction rate constant of TiO2/Bi2WO6 heterojunctions was four times higher than that of single phase Bi2WO6 nanosheets, while the photocatalytic reaction rate constant of TiO2/Bi3.64Mo0.36O6.55 heterojunctions exhibited a seven-fold increase compared with Bi3.64Mo0.36O6.55 nanopaticles. The substantial enhancement of photocatalytic activity is primarily ascribed to the matching energy band structure in the TiO2/BixMyOz heterojunctions, which is able to improve the separation efficiency of photo-generated electron-hole pairs and prolong the lifetime of charge carriers in the heterojunctions.
关键词: TiO2/Bi2MoO6 heterojunctions,photocatalytic activities,TiO2/Bi2WO6 heterojunctions,defects induction,TiO2/Bi3.64Mo0.36O6.55 heterojunctions
更新于2025-09-23 15:23:52
-
Engineering Charge Transfer Characteristics in Hierarchical Cu2S QDs @ ZnO Nanoneedles with p–n Heterojunctions: Towards Highly Efficient and Recyclable Photocatalysts
摘要: Equipped with staggered gap p-n heterojunctions, a new paradigm of photocatalysts based on hierarchically structured nano-match-shaped heterojunctions (NMSHs) Cu2S quantum dots (QDs)@ZnO nanoneedles (NNs) are successfully developed via engineering the successive ionic layer adsorption and reaction (SILAR). Under UV and visible light illumination, the photocatalytic characteristics of Cu2S@ZnO heterojunctions with different loading amounts of Cu2S QDs are evaluated by the corresponding photocatalytic degradation of rhodamine B (RhB) aqueous solution. The results elaborate that the optimized samples (S3 serial specimens with six cycles of SILAR reaction) by means of tailored the band diagram exhibit appreciable improvement of photocatalytic activities among all synthesized samples, attributing to the sensitization of a proper amount of Cu2S QDs. Such developed architecture not only could form p–n junctions with ZnO nanoneedles to facilitate the separation of photo-generated carries but also interact with the surface defects of ZnO NNs to reduce the electron and hole recombination probability. Moreover, the existence of Cu2S QDs could also extend the light absorption to improve the utilization rate of sunlight. Importantly, under UV light S3 samples demonstrate the remarkably enhanced RhB degradation efficiency, which is clearly testified upon the charge transfer mechanism discussions and evaluations in the present work. Further supplementary investigations illustrate that the developed nanoscale Cu2S@ZnO heterostructures also possess an excellent photo-stability during our extensive recycling photocatalytic experiments, promising for a wide range of highly efficient and sustainably recyclable photocatalysts applications.
关键词: Photocatalysis,QDs,ZnO@Cu2S hierarchical structure,Photostability,p-n heterojunctions
更新于2025-09-23 15:23:52
-
Insight into visible light-driven photocatalytic performance of direct Z-scheme Bi2WO6/BiOI composites constructed in -situ
摘要: Bi2WO6/BiOI composites with enhanced photocatalytic performance were constructed in-situ by a hydrothermal routine. The Bi2WO6/BiOI composites were studied by Brunauer -Emmett-Teller (BET), X-ray di?raction patterns (XRD), UV–Vis di?use re?ectance spectra (DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), surface photovoltage spectroscopy (SPS), electron spin-resonance (ESR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results support the coexistence of Bi2WO6 and BiOI in the composites. All the Bi2WO6/BiOI composites display higher separation rate of photoinduced carriers than BiOI. OH and·O2? were formed in the composite photocatalytic system. Finally, a direct Z-scheme was proposed for the Bi2WO6/BiOI composites.
关键词: Separation of photoinduced carriers,Bi2WO6,Heterojunctions,Visible light photocatalytic property,BiOI
更新于2025-09-23 15:23:52
-
(S)TEM methods contributions to improve the fabrication of InGaN thin films on Si, and InN nanostructures on flat Si and rough InGaN
摘要: The main results of a complete study by Transmission and Scanning-Transmission Electron Microscopies ((S)TEM) are described for (i) InGaN/Si (111) heterostructures in the whole compositional range of the alloys, and (ii) InN quantum dots (InN QDs) directly grown on Si wafers or on relatively rough InGaN/Si (111) templates. The combination of many (S)TEM-based techniques allowed to evaluate different characteristics of the systems under study: (InN QD/) InGaN/Si and InN QD/Si interfaces and crystal qualities, structural and chemical imperfections and other important features. InxGa1-xN thin films are often identified as single-crystalline, very homogeneous in composition, and mostly wurtzite-type, remarkably at any value of x. Also, (S)TEM techniques revealed that the InN nanostructures were hexagonal single crystals, mostly epitaxial to the supporting lattice. The InN crystals also exhibited partially cubic arrangements when allocated onto In-rich InxGa1-xN (i.e. x > 0.7).
关键词: Semiconductors,TEM,Heterojunctions,Crystal structure.,Nitride materials,Crystal growth,Transmission Electron Microscopy
更新于2025-09-23 15:23:52
-
Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu <sub/>2</sub> O Polyhedra Arising from Tunable Interfacial Band Alignment
摘要: ZnS particles were grown over Cu2O cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, Cu2O cubes stay photocatalytically inactive. ZnS-decorated Cu2O octahedra show enhanced photocatalytic activity resulting from better charge carrier separation upon photoexcitation. Surprisingly, Cu2O rhombic dodecahedra give greatly suppressed photocatalytic activity after ZnS deposition. Electron paramagnetic resonance (EPR) spectra agree with these experimental observations. Time-resolved photoluminescence (TRPL) profiles provide charge transfer insights. The decrease in the photocatalytic activity is attributed to an unfavorable band alignment caused by significant band bending within the Cu2O (110)/ZnS (200) plane interface. A modified Cu2O–ZnS band diagram is presented. Density functional theory (DFT) calculations generating plane-specific band energy diagrams of Cu2O and ZnS match well with the experimental results, showing charge transfer across the Cu2O (110)/ZnS (200) plane interface would not happen. This example further illustrates that the actual photocatalysis outcome for semiconductor heterojunctions cannot be assumed because interfacial charge transfer is strongly facet-dependent.
关键词: interfacial charge transfer,zinc sulfide,cuprous oxide,facet-dependent properties,heterojunctions,band alignment
更新于2025-09-23 15:23:52
-
High-frequency breakdown of the integer quantum Hall effect in GaAs/AlGaAs heterojunctions
摘要: The integer quantum Hall effect is a well-studied phenomenon at frequencies below about 100 Hz. The plateaus in high-frequency Hall conductivity were experimentally proven to retain up to 33 GHz, but the behavior at higher frequencies has remained largely unexplored. Using continuous-wave terahertz spectroscopy, the complex Hall conductivity of GaAs/AlGaAs heterojunctions was studied in the range of 69–1100 GHz. Above 100 GHz, the quantum plateaus are strongly smeared out and replaced by weak quantum oscillations in the real part of the conductivity. The amplitude of the oscillations decreases with increasing frequency. Near 1 THz, the Hall conductivity does not reveal any features related to the filling of Landau levels. Similar oscillations are observed in the imaginary part as well; this effect has no analogy at zero frequency. This experimental picture is in disagreement with existing theoretical considerations of the high-frequency quantum Hall effect.
关键词: integer quantum Hall effect,GaAs/AlGaAs heterojunctions,terahertz spectroscopy,high-frequency Hall conductivity,quantum oscillations
更新于2025-09-23 15:22:29
-
The Enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite
摘要: Multiple techniques were utilized to characterize the structure and morphology of the SnO2/reduced graphene oxide (rGO) composite, in which the composite was prepared by a facile one-pot microwave-assisted hydrothermal method. As a result, SnO2 nanoparticles with diameters of 3-5 nm were anchored uniformly on both sides of the rGO sheets. Meanwhile, a series of resistive-type gas sensors based on SnO2/rGO composite and pure SnO2 were fabricated and tested for analyzing the effects on introducing rGO. The results revealed that, the composite exhibited obviously enhanced gas sensing properties towards NO2 with high response, fast response and recovery speed, and good selectivity and reproducibility. At 75°C, the response of the composite to 350 ppb NO2 was about 6.6 times of that to pure SnO2. In addition, the response and recovery time of the sensor was greatly reduced from 39.2/54.7 to 6.5/1 minutes, and the detecting limit of the sensor was even as low as 50 ppb. Provided with the enlarged surface area and local p-n heterojunctions, the synergistic effect of SnO2 nanoparticles and rGO contributed to the enhanced gas sensing properties of SnO2/rGO composite.
关键词: SnO2,Graphene,Heterojunctions,Microwave-assisted hydrothermal,Gas sensor
更新于2025-09-23 15:21:21
-
Laser Reduction of Graphene Oxide/Zinc Oxide Nanoparticle Nanocomposites as a Onea??Step Process for Supercapacitor Fabrication
摘要: Herein, the laser reduction of graphene oxide (GO) and zinc oxide nanoparticle (ZnONP) nanocomposite ?lms is proposed as a one-step process for supercapacitor fabrication. The ?lms, deposited by casting onto a ?exible poly(ethylene terephthalate) (PET) substrate coated with indium-doped tin oxide (ITO), are subjected to laser irradiation (5 mW, 405 nm) to reduce the GO phase and produce laser-reduced GO (LRGO). Scanning electron microscopy/energy dispersion spectroscopy (SEM–EDS), micro-Raman spectroscopy, and current versus voltage (I(cid:1) V) analyses show a partial reduction of GO to LRGO, forming several conductor-insulating (LRGO/GO) microporous interfaces, and thereby favoring the formation of a supercapacitor structure. Moreover, the topmost LRGO ?lm layer is extensively reduced, making it suf?ciently conducting to work as the counter electrode as well. However, the reduction process is less effective when ZnONPs are introduced into the GO matrix because ZnONPs get clustered and scatter the incident laser before reaching the GO phase. The capacitive behavior, assessed by cyclic voltammetry and galvanostatic charge–discharge measurements, reveals the following (cid:3)1 (GO/LRGO/ ZnONP). The method proposed herein is advantageous because it produces the microcapacitor structures and LRGO counter electrode in a single laser reduction step.
关键词: laser-reduced graphene oxide,graphene oxide,nanocomposites,micro-heterojunctions,zinc oxide nanoparticles
更新于2025-09-23 15:21:01