- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Li Permeability Increase in Nano-Sized Amorphous Silicon Layers
摘要: Li permeation through nano-sized amorphous Si layers is investigated for temperatures up to 500°C (773 K) as a function of layer thickness between 12 and 95 nm. For the experiments the Si layers are embedded between 6Li and 7Li isotope enriched oxide based Li reservoirs and the thermally induced isotope exchange (through silicon layers and interfaces) is analyzed by Secondary Ion Mass Spectrometry in order to calculate Li permeabilities. The experiments reveal that the interface between silicon and the Li metal oxide does not hinder Li permeation and Li diffusion in silicon controls the overall process. The determined Li permeability increases drastically by orders of magnitude with decreasing silicon layer thickness, accompanied by a decrease in the activation enthalpy of Li permeation. These results can be explained by a gradual transition of trap-limited slow Li diffusion at high silicon thicknesses to interstitial fast Li diffusion at low Si thicknesses.
关键词: Li permeation,nano-sized layers,Li permeability,trap-limited diffusion,amorphous silicon,Secondary Ion Mass Spectrometry,isotope exchange,interstitial diffusion
更新于2025-09-23 15:21:21
-
Synergic effect of pore size engineering and an applied electric field on the controlled permeation of alkali metal atoms and ions across pristine and defect-containing h-BN sheets
摘要: The permeation and selectivity of alkali metal atoms and ions through normal and defected hexagonal boron nitride was studied in the presence and absence of water and an electric field. The defects include one (VB & VN), two (VBN) and three atom (VN2B) vacancies. The morphology and size of the pore (defect) in the h-BN sheet significantly affect the energy barriers. These results indicate that an h-BN sheet with appropriate pore size possesses good Li/Li+ selectivity. The permeation of lithium atoms through VN2B-h-BN is almost a barrierless process (1.75 kcal mol?1). Moreover, the VBN h-BN nanosheet selectively allows the passage of Li atoms at room temperature with the highest selectivity ratio of 1.58 × 1013. The presence of water molecules increases the barrier of alkali metal atom permeation. The effect of water molecules is more pronounced for alkali metal atom permeation through a defected h-BN nanosheet as compared to alkali metal ions. An applied electric field perpendicular to the h-BN sheet further decreases the permeation barriers. For example, the energy barrier is reduced to 31 kcal mol?1 (from 34 kcal mol?1) in the presence of an electric field for the permeation of lithium through H2O–VB h-BN–H2O. These studies can be extended to investigate the separation capability of porous hexagonal boron nitride nanosheets for other metal atoms and ions.
关键词: electric field,permeation,water molecules,alkali metal atoms,hexagonal boron nitride,defects,ions,selectivity
更新于2025-09-23 15:21:01
-
Protective Properties of a Microstructure Composed of Barrier Nanostructured Organics and SiOx Layers Deposited on a Polymer Matrix
摘要: The SiOx barrier nanocoatings have been prepared on selected polymer matrices to increase their resistance against permeation of toxic substances. The aim has been to find out whether the method of vacuum plasma deposition of SiOx barrier nanocoatings on a polyethylene terephthalate (PET) foil used by Aluminium Company of Canada (ALCAN) company (ALCAN Packaging Kreuzlingen AG (SA/Ltd., Kreuzlingen, Switzerland) within the production of CERAMIS? packaging materials with barrier properties can also be used to increase the resistance of foils from other polymers against the permeation of organic solvents and other toxic liquids. The scanning electron microscopy (SEM) microstructure of SiOx nanocoatings prepared by thermal deposition from SiO in vacuum by the Plasma Assisted Physical Vapour Deposition (PA-PVD) method or vacuum deposition of hexamethyldisiloxane (HMDSO) by the Plasma-enhanced chemical vapour deposition (PECVD) method have been studied. The microstructure and behavior of samples when exposed to a liquid test substance in relation to the barrier properties is described.
关键词: CERAMIS?,polymeric matrix,barrier material,permeation,nanocoating of SiOx,SorpTest,PVD,PECVD,plasma deposition,PA-PVD
更新于2025-09-23 15:21:01
-
Laser induced graphene /ceramic membrane composite: Preparation and characterization
摘要: In this work, laser induced graphene (LIG) was successfully fabricated on microporous ceramic membranes. The surface area, morphology, and chemical characterizations were performed on the LIG layer. Water contact angle measurements showed the hydrophobicity of LIG. Pure water and solvents with different polarities were used to understand the solvent flux behavior of LIG membrane. The LIG membrane showed very high non-polar solvent fluxes and remarkably low water permeability, and thus, the transport through the LIG membrane is related to dipole moment and dielectric constant, represented by solvent polarity. The LIG membrane achieved 90% rejection for 255 nm diameter silica particles, suggesting the presence of submicron size connecting pore channels that dominate the transport mechanism.
关键词: Laser induced graphene,LIG/Ceramic composite,Solvent permeation
更新于2025-09-19 17:13:59
-
Controlling Surface Chemical Heterogeneities of Ultrasmall Fluorescent Core–Shell Silica Nanoparticles as Revealed by High-Performance Liquid Chromatography
摘要: Ultrasmall (diameter below 10 nm) fluorescent core?shell silica nanoparticles have garnered increasing attention in recent years as a result of their high brightness and favorable biodistribution properties important for applications including bioimaging and nanomedicine. Here, we present an in-depth study that provides new insights into the physical parameters that govern full covalent fluorescent dye encapsulation within the silica core of poly(ethylene glycol)-coated core?shell silica nanoparticles referred to as Cornell prime dots (C′ dots). We use a combination of high-performance liquid chromatography (HPLC), gel-permeation chromatography, and fluorescence correlation spectroscopy to monitor the result of ammonia concentration in the synthesis of C′ dots from negatively and positively charged versions of near-infrared dyes Cy5 and Cy5.5. HPLC, in particular, allows the distinction between cases of full versus partial dye encapsulation in the silica particle core leading to surface chemical heterogeneities in the form of hydrophobic surface patches, which, in turn, modulate biological response in ferroptotic cell death experiments. Our results demonstrate that there is a complex interplay between dye?dye and dye?silica cluster interactions originally formed in the sol?gel synthesis governing optimal dye encapsulation. We expect that the reduced surface chemical heterogeneities will make the resulting nanoparticles attractive for a number of applications in biology and medicine.
关键词: gel-permeation chromatography,ferroptotic cell death,high-performance liquid chromatography,fluorescent core?shell silica nanoparticles,fluorescence correlation spectroscopy
更新于2025-09-11 14:15:04
-
Comparing the uniformity of light glass fiber felt based on process improvement, microstructural forming mechanism and physical properties
摘要: Light glass fiber felt (density 10 kg/m3), a porous composite consisting of 83% glass fibers (the average diameter 1.5 mm) and 17% phenolic resin, is usually used to increase sound insulation in the aerospace industry. The purpose of this research is further to improve the uniformity of light glass fiber felts by process optimization, analysis of microstructural forming mechanisms and physical properties. Light glass fiber felt is produced by the flame blowing process. The results show that process optimization can effectively improve the uniformity of light glass fiber felt. Light glass fiber felt exhibits a micro-layer structure seen as consisting of a number of ‘‘three-layer’’ structures, that is dense (more fibers)-loose (less fibers)-dense structure. In addition, process optimization can improve the stability of permeation rate and enhance sound insulation performance, which makes light glass fiber felt an excellent sound insulator.
关键词: uniform,light glass fiber felt,physical properties,sound insulation,microstructure,permeation rate
更新于2025-09-10 09:29:36