- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Surface Ligands Management for Efficient CsPbBrI <sub/>2</sub> Perovskite Nanocrystal Solar Cells
摘要: CsPbX3 (X= Cl, Br, I) inorganic perovskite nanocrystals (PNCs) not only maintain the excellent optical and electronic properties of bulk material but also possess the features of nano-materials, such as tunable bandgap, easily processable colloidal ink, enable them to be suitable for incorporation into various electronic devices and compatible with printing techniques. In contrast to the traditional II-VI and III-V semiconductor nanocrystals, the unique defect-tolerance effect makes the CsPbX3 PNCs very promising materials for optoelectronic applications. The ligands around the NCs play a critical role on the optoelectronic devices performance. Here, through a facile hexane/ethyl acetate (MeOAc) solvent treatment method to control the ligand amount around the CsPbBrI2 PNCs, we systematically demonstrated the impact of ligand amount on the performance of solar cell devices and first quantify the ligand amount precisely by nuclear magnetic resonance (NMR) internal standard method. Through controlling the ligand amount, the film quality, charge transfer and transport properties are largely improved. In addition, a simple annealing process is applied to improve the interface properties by partial crystal fusion. As a consequence, the photovoltaic power conversion efficiency (PCE) of 12.2% is achieved by employing a n-i-p device structure, which is the highest performance of mixed-halide CsPbX3 NCs solar cells. This work emphasizes the important role of ligand amount on the NCs device performance.
关键词: ligand amount control,CsPbBrI2,solar cell,inorganic perovskite,nanocrystals
更新于2025-09-23 15:19:57
-
Surface ligation stage revealed through polarity-dependent fluorescence during perovskite nanocrystal growth
摘要: Methylammonium lead iodide perovskite (MAPbI3) nanocrystals (NCs) exhibit favorable photophysics for a range of light emitting applications. A comprehensive mechanistic understanding of the nucleation and growth processes for these NCs is still elusive. Absorbance and fluorescence spectra were measured during a NC synthesis with kinetics limited by precursor solvation using a rapid sampling technique wherein syringe filters quench NC growth. The signal from well-capped NCs in the reaction mixture was isolated by the use of polar syringe filters, enabling spectroscopic observation of the surface ligation process. Our results indicate that the formation of these NCs involves a single stage of nucleation and growth, followed by a terminal surface ligation stage.
关键词: perovskite nanocrystals,growth,nucleation,fluorescence,absorbance,surface ligation
更新于2025-09-23 15:19:57
-
Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling
摘要: Auger recombination has been a long-standing obstacle to many prospective applications of colloidal quantum dots (QDs) ranging from lasing, light-emitting diodes to bio-labeling. As such, understanding the physical underpinnings and scaling laws for Auger recombination is essential to these applications. Previous studies of biexciton Auger recombination in various QDs established a universal scaling of biexciton lifetime (τXX) with QD volume (V ): τXX = γV. However, recent measurements on perovskite nanocrystals (NCs), an emerging class of enablers for light harvesting and emitting applications, showed significant deviations from this universal scaling law, likely because the measured NCs are weakly-confined and also have relatively broad size-distributions. Here we study biexciton Auger recombination in mono-dispersed (size distributions within 1.7%–9.0%), quantum-confined CsPbBr3 NCs (with confinement energy up to 410 meV) synthesized using a latest approach based on thermodynamic equilibrium control. Our measurements clearly reproduce the volume-scaling of τXX in confined CsPbBr3 QDs. However, the scaling factor γ (0.085 ± 0.001 ps/nm3) is one order of magnitude lower than that reported for CdSe and PbSe QDs (1.00 ± 0.05 ps/nm3), suggesting unique mechanisms enhancing Auger recombination rate in perovskite NCs.
关键词: biexciton,Auger recombination,perovskite nanocrystals,ultrafast spectroscopy,volume-scaling
更新于2025-09-23 15:19:57
-
Anion Exchange and the Quantum-Cutting Energy Threshold in Ytterbium-Doped CsPb(Cl1-xBrx)3 Perovskite Nanocrystals
摘要: Colloidal halide perovskite nanocrystals of CsPbCl3 doped with Yb3+ have demonstrated remarkably high sensitized photoluminescence quantum yields (PLQYs), approaching 200%, attributed to a picosecond quantum-cutting process in which one photon absorbed by the nanocrystal generates two photons emitted by the Yb3+ dopants. This quantum-cutting process is thought to involve a charge-neutral defect cluster within the nanocrystal's internal volume. Here, we demonstrate that Yb3+-doped CsPbCl3 nanocrystals can be converted post-synthetically to Yb3+-doped CsPb(Cl1-xBrx)3 nanocrystals without compromising the desired high PLQYs. Nanocrystal energy gaps can be tuned continuously from Eg ~ 3.06 eV (405 nm) in CsPbCl3 down to Eg ~ 2.53 eV (~490 nm) in CsPb(Cl0.25Br0.75)3 while retaining a constant PLQY above 100%. Reducing Eg further causes a rapid drop in PLQY, interpreted as reflecting an energy threshold for quantum cutting at approximately twice the energy of the Yb3+ 2F7/2 → 2F5/2 absorption threshold. These data demonstrate that very high quantum-cutting energy efficiencies can be achieved in Yb3+-doped CsPb(Cl1-xBrx)3 nanocrystals, offering the possibility to circumvent thermalization losses in conventional solar technologies. The presence of water during anion exchange is found to have a deleterious effect on the Yb3+ PLQYs but does not affect the nanocrystal shapes, morphologies, or even reduce the excitonic PLQYs of analogous undoped CsPb(Cl1-xBrx)3 nanocrystals. These results provide valuable information relevant to development and application of these unique materials for spectral-shifting solar energy conversion technologies.
关键词: ytterbium doping,quantum cutting,anion exchange,Perovskite nanocrystals
更新于2025-09-19 17:15:36
-
Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs <sub/>4</sub> PbBr <sub/>6</sub> perovskite films
摘要: Lead halide perovskite nanocrystals (NCs) apart from their overwhelming optoelectronic applications have recently demonstrated promising nonlinear optical (NLO) properties such as strong two-photon absorption cross-sections (~105 GM), two-photon fluorescence, and saturable absorption even at very high peak intensity. Zero-dimensional perovskite-related materials (0-D PRMs) are a new class of materials offering a high exciton binding energy (Eg ≥ 180 meV) with a strong photoluminescence (PL) quantum yield in few cases. Herein, we report the broadband third-order NLO properties of phase pure Cs4PbBr6 0-D PRM achieved using the Z-scan and degenerate four-wave mixing techniques in the femtosecond regime. Considering the growing content of the fluorescent and non-fluorescent forms of this material, we have performed our studies on both of them. These perovskite NCs exhibited strong multi-photon absorption properties in the near-infrared region with two-photon absorption (2PA) (cross-section, σ2 = 10?43–10?44 cm4 s equivalent to ~106 GM) in the 500–800 nm region, three-photon absorption (3PA) (cross-section, σ3 ~10?73 cm6 s2) in the 900–1200 nm region and four-photon absorption (4PA) (cross-section, σ4 ~10?100 cm8 s3) in the 1300–1500 nm spectral region. These multi-photon absorption processes are explained using a simple band diagram. The measured NLO coefficients and cross-sections are fairly large when compared to some of the earlier reports on perovskite-based NCs. Cs4PbBr6 0-D PRM also demonstrated a large third-order NLO susceptibility χ(3) (~10?7 esu), which can be attributed to the strong quantum confinement arising from spatially isolated, exciton containing individual [PbBr6]4? octahedron. These results clearly suggest the potential of 0D-PRMs in applications such as photonics and ultrafast all-optical switching devices.
关键词: Z-scan,perovskite nanocrystals,ultrafast optics,degenerate four-wave mixing,multi-photon absorption,nonlinear optical properties
更新于2025-09-19 17:15:36
-
Ethanol-Precipitable Silica-Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Long-Term Storage and Re-Usage
摘要: Perovskite nanocrystals (PNCs) are emerging luminescent materials due to their fascinating physic-optical properties. However, their sensitive surface chemistry with organic polar solvents, oxygen and moisture greatly hinders their developments towards practical applications. Herein we promote silica-passivated PNCs (SP-PNCs) by in situ hydrolyzing the surface ligands of (3-aminopropyl) triethoxysilane. The resultant SP-PNCs possesses a high quantum yield (QY) of 80% and are precipitable by polar solvents, such as ethanol and acetone, without destroying their surface chemistry or losing QY, which offers an eco-friendly and efficient method for separation, purification and phase transfer of PNCs compared with the traditional solvent evaporation technique. Moreover, we further promoted a swelling-deswelling encapsulation process to incorporate the as-made SP-PNCs into polystyrene microspheres (PMs), which can largely increase the stability of the SP-PNCs against moisture for long-term storage. Besides, the embedded SP-PNCs can also be reused and mono-dispersed by totally dissolving the PMs in suitable solvents for making all-solution-processed devices. We thereby believe this work should open new avenues for greener synthesis, scalable production, and long-term storage of PNCs towards the emerging practical applications.
关键词: surface engineering,polar environment,perovskite nanocrystals,encapsulation,stability
更新于2025-09-19 17:15:36
-
Exploring the surface chemistry of cesium lead halide perovskite nanocrystals
摘要: Colloidal nanocrystals (NCs) of cesium lead halide perovskites (CsPbX3, X = Cl, Br or I) are emerging as an exciting class of optoelectronic materials, but the retention of their colloidal and structural integrity during isolation, purification and handling still represents a critical issue. The impelling questions concerning their intrinsic chemical instability are connected to the dynamic nature of the bonding between the inorganic surface and the long-chain capping ligands. However, the key aspects of CsPbX3's surface chemistry that directly impact their stability remain elusive. In this contribution, we provide an in-depth investigation of the surface properties of differently composed CsPbX3 NCs, prepared by traditional hot-injection methods. The study, mainly relying on solution NMR spectroscopy, is backed up by elemental analysis as well as morphological, structural and optical investigations. We ascertained that the nature of the ligand adsorption/desorption processes at the NC surface is dependent on its elemental composition, thus explaining the origin of the instability afflicting CsPbI3 NCs. We also evaluated the effect of NC purification as well as of the degradation pathways involving the organic shell on the surface chemistry of CsPbX3 NCs. This study paves the way for new post-functionalization strategies for this promising class of nanomaterials.
关键词: surface chemistry,colloidal stability,degradation pathways,cesium lead halide perovskite nanocrystals,purification,ligand adsorption/desorption,NMR spectroscopy
更新于2025-09-19 17:15:36
-
Solid-State Encapsulation and Color Tuning in Films of Cesium Lead Halide Perovskite Nanocrystals for White Light Generation
摘要: Perovskite nanocrystals (PNCs) are highly demanding nanomaterials for solid-state lighting applications. A challenge for their exploitation in practical applications is the insufficient ambient and water stability associated with their ionic nature. Here we report a novel route for solid-state encapsulation of films of perovskite nanocrystals (PNCs) through vapor-phase deposition of a thin and hydrophobic layer of fluoroalkyltrichlorosilanes (FAS). High quality nanoscale crystals of CsPbBr3 were synthesized with well-established colloidal methods and coated on solid substrates. The films of PNCs were then subjected to vapor of FAS for short durations of time (<60 s) in ambient atmosphere resulting in deposition of a thin (< 20 nm) hydrophobic layer. Besides providing a barrier for water and humidity, the vapor-phase deposition of FAS was accompanied with the blue-shift of the emission wavelength of the PNCs. The color shift results from the exchange of Br with Cl anions, which emerge during the self-hydrolysis of the silane molecules. Throughout this process, we demonstrate the enhanced water stability of the films of PNCs and fine tunability of the wavelength in films from 516 nm to 488 nm. The fabrication of a white light emitting diode and tunability of the color coordinates with the duration of the FAS deposition was demonstrated. The rapid, scalable, and inexpensive solid-state encapsulation approach shows great promise for films of halide perovskites.
关键词: perovskite nanocrystals,vapor-phase deposition,trichlorosilane,colloidal optoelectronics
更新于2025-09-19 17:15:36
-
High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication
摘要: Optical wireless communication (OWC) using the ultra-broad spectrum of the visible-to-ultraviolet (UV) wavelength region remains a vital field of research for mitigating the saturated bandwidth of radio-frequency (RF) communication. However, the lack of an efficient UV photodetection methodology hinders the development of UV-based communication. The key technological impediment is related to the low UV-photon absorption in existing silicon photodetectors, which offer low-cost and mature platforms. To address this technology gap, we report a hybrid Si-based photodetection scheme by incorporating CsPbBr3 perovskite nanocrystals (NCs) with a high photoluminescence quantum yield (PLQY) and a fast photoluminescence (PL) decay time as a UV-to-visible colour-converting layer for high-speed solar-blind UV communication. The facile formation of drop-cast CsPbBr3 perovskite NCs leads to a high PLQY of up to ~73% and strong absorption in the UV region. With the addition of the NC layer, a nearly threefold improvement in the responsivity and an increase of ~25% in the external quantum efficiency (EQE) of the solar-blind region compared to a commercial silicon-based photodetector were observed. Moreover, time-resolved photoluminescence measurements demonstrated a decay time of 4.5 ns under a 372-nm UV excitation source, thus elucidating the potential of this layer as a fast colour-converting layer. A high data rate of up to 34 Mbps in solar-blind communication was achieved using the hybrid CsPbBr3–silicon photodetection scheme in conjunction with a 278-nm UVC light-emitting diode (LED). These findings demonstrate the feasibility of an integrated high-speed photoreceiver design of a composition-tuneable perovskite-based phosphor and a low-cost silicon-based photodetector for UV communication.
关键词: CsPbBr3 perovskite nanocrystals,Silicon-based photodetector,UV photodetection,Solar-blind UV communication,Optical wireless communication
更新于2025-09-19 17:13:59
-
High-efficiency perovskite nanocrystal light-emitting diodes <i>via</i> decorating NiO <sub/>x</sub> on the nanocrystal surface
摘要: Nickel oxides exhibit a great potential as hole transport layers for the fabrication of efficient perovskite light-emitting diodes (LEDs) due to their high carrier mobility and good energy band matching with perovskite nanocrystals. In this work, nickel oxides were directly decorated on the CsPbBr3 nanocrystal surface through adsorption and a sequential oxidation treatment. The resulting sample shows a high photoluminescence quantum-yield of 82%. The LED using CsPbBr3 nanocrystals with nickel oxides achieves a high external quantum efficiency (EQE) of up to 16.8% with a low turn-on voltage of 2.8 V, which is much superior to that of the counterpart LED based on pristine CsPbBr3 nanocrystals (EQE = 0.7%, turn-on voltage = 5.6 V). The excellent performance of the nickel oxide decorated CsPbBr3 nanocrystal device could be attributed to the better energy level matching between the decorated nanocrystals and the transport layers of the device and more balanced charge carrier injection. Furthermore, the operational lifetime of the nickel oxide decorated CsPbBr3 nanocrystal device is 40 times longer than that of the pristine CsPbBr3 nanocrystal device.
关键词: perovskite nanocrystals,photoluminescence quantum-yield,light-emitting diodes,external quantum efficiency,nickel oxides
更新于2025-09-19 17:13:59