修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Amorphous Polymer Acceptor Containing B ← N Units Matches Various Polymer Donors for All-Polymer Solar Cells

    摘要: Polymer acceptors for high-efficiency all-polymer solar cells (all-PSCs) are generally semicrystalline. In this manuscript, we report an amorphous polymer acceptor, which matches well with a variety of polymer donors to produce efficient all-PSCs. The amorphous polymer acceptor (rr-PBN) is a regiorandom polymer consisting of alternating asymmetric B←N bridged thienylthiazole (BNTT) unit and pyridine-flanked diketopyrrolopyrrole (PyDPP) unit. It is amorphous in thin film because of its regiorandom structure and the large steric hindrance. rr-PBN shows deep LUMO/HOMO energy levels of ?3.71/?5.81 eV, strong sunlight harvesting capability and high electron mobility of 2.20 × 10?4 cm2 V?1 s?1. As a polymer acceptor, rr-PBN matches well with three commercially available polymer donors, J71, PTB7-Th, and PffBT4T-2OD to give excellent percolating bicontinuous network morphology in all-PSCs. We propose that the crystallization of polymer donors governs the film-forming process and dominates the phase separation morphology, leading to good phase separation morphology. The all-PSC devices all show power conversion efficiencies (PCEs) of 5.2?6.6%. This study provides a new direction to design polymer acceptors and a novel approach to control phase separation morphology of all-PSCs.

    关键词: all-polymer solar cells,phase separation morphology,B←N units,amorphous polymer acceptor,power conversion efficiencies

    更新于2025-09-11 14:15:04

  • Solution-Processable All-Small-Molecule for High-Performance Nonfullerene Organic Solar Cells with High Crystallinity Acceptor

    摘要: In this work, two small molecule acceptors (IDIC and IDIC-4F) with different crystallinity and energy level have been successfully applied in nonfullerene-based all-small molecule organic solar cells (NFASM-OSCs). The donor of DFDT(DPP)2 was chosen because of complementary absorption with IDIC and IDIC-4F. As acceptor, IDIC-4F exhibited a higher PCE than IDIC due to better crystallinity. This work not only shows us how to balance the relationship between Voc and Jsc, but also suggests us how to get a good phase separation morphology. Moreover, Increased crystallinity helps to inhibit bimolecular recombination and increase charge mobility. By optimizing device preparation conditions, the best PCE of 9.43% for DFDT(DPP)2 : IDIC-4F as active layer was achieved with excitable Jsc (16.83 mA cm-2) and FF (0.65). The FF and Jsc of resultant device show a significant increased which is among the top efficiencies based on DPP as terminal acceptor groups of NFSM-OSCs reported in document up to now.

    关键词: crystallinity,small molecule acceptors,phase separation morphology,nonfullerene organic solar cells,charge mobility

    更新于2025-09-11 14:15:04